Skip to main content

Advertisement

Log in

Genetic variation and structure in the neotropical tree, Manilkara zapota (L) P. Royen (Sapotaceae) used by the ancient Maya

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Manilkara zapota is a tropical tree species that was used by the ancient Maya in construction of their temples and as a source for fruit. Although this has been supported by ethnographic and paleoethnobotanical data, we used genetic approaches to estimate variation and structure in modern populations of this neotropical tree species to discern if genetic patterns were consistent with earlier influences of ancient Maya management or if they could be explained by the natural history of the species. Nine microsatellite markers, consisting of seven novel markers and two markers identified in a related species, were used to characterize the genetic diversity and population genetic structure in three populations of M. zapota collected from reforested, historically urbanized ancient Maya ceremonial centers in Guatemala and Belize, from home gardens in Guatemala, and from a number of cultivars. Levels of genetic variation were slightly higher in forest populations (H O = 0.447) than in gardens (0.430) and cultivated varieties of M. zapota (0.351). We observed low but significant population substructuring (θ = 0.01) between sites 90 km apart, and minimal evidence of inbreeding. Substantial levels of genetic diversity with minimal genetic structure in M. zapota are consistent with movement of the ancient Maya as they possibly carried fruits and seedlings during immigration, but they may more likely reflect natural processes such as seed and pollen being dispersed widely throughout the tropical forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alcorn JB (1984) Huastec Mayan Ethnobotany. University of Texas Press, Austin

    Google Scholar 

  • Aldrich PR, Hamrick JL, Chavarriaga P, Kochert G (1998) Microsatellite analysis of demographic genetic structure in fragmented populations of the tropical tree Symphonia globulifera. Mol Ecol 7:933–944

    Article  CAS  PubMed  Google Scholar 

  • Ankli A, Heinrich M, Bork P, Wolfram L, Bauerfeind P, Brun R, Schmid C, Weiss C, Bruggisser R, Gertsch J, Wasescha M, Sticher O (2002) Yucatec Mayan medicinal plants: evaluation based on indigenous uses. J Ethnopharmacol 79:43–52

    Article  PubMed  Google Scholar 

  • Ashworth VETM, Clegg MT (2003) Microsatellite markers in avocado (Persea americana Mill.): genealogical relationships among cultivated avocado genotypes. J Hered 94:407–415

    Article  CAS  PubMed  Google Scholar 

  • Atran S, Lois X, Ek’ EU (2004) Plants of the Petén Itza’ Maya. Memoirs of the Museum of Anthropology, No.38. University of Michigan, Ann Arbor

    Google Scholar 

  • Atran S (1999) Classification of useful plants by the Northern Petén Maya. In: White C (ed) Reconstructing ancient Maya diet. University of Utah Press, Salt Lake City, pp 19–59

    Google Scholar 

  • Atran S, Chase AF, Fedick SL, Knapp G, McKillop H, Marcus J, Schwartz NB, Webb MC (1993) Itza Maya tropical agro-forestry. Curr Anthropol 34:633–700

    Article  Google Scholar 

  • Austerlitz F, Mariette S, Machon N, Gouyon P, Godelle B (2000) Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154:1309–1321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Azevedo VCR, Vinson CC, Ciampi AY (2005) Twelve microsatellite loci in Manilkara huberi (Ducke) Standl (Sapotaceae), an Amazonian timber species. Mol Ecol Notes 5:13–15

    Article  CAS  Google Scholar 

  • Beach T, Luzzadder-Beach S, Dunning N, Hageman J, Lohse J (2002) Upland agriculture in the Maya Lowlands: Ancient Maya soil conservation in Northwestern Belize. Geogr Rev 92:372–397

    Article  Google Scholar 

  • Benjamin TJ, Montañez PI, Jiménez JJM, Gillespie AR (2001) Carbon, water and nutrient flux in Maya home gardens in the Yucatán peninsula of México. Agrofor Syst 53:103–111

    Article  Google Scholar 

  • Birnbaum K, DeSalle R, Peters CM, Benfey PN (2003) Integrating gene flow, crop biology, and farm management in on-farm conservation of avocado (Persea americana, Lauraceae). Am J Bot 90:1619–1627

    Article  PubMed  Google Scholar 

  • Brokaw NVL, Mallory EP (1993) Vegetation of the Rio Bravo Conservation and Management Area, Belize. Maromet Bird Observatory, MA and Programme for Belize

  • Brown AHD (1999) The genetic structure of crop landraces and the challenge to conserve them in situ on farms. In: Brush SB (ed) Genes in the field. CRC Press. doi:10.1201/9781420049824.sec2

  • Brown JE, Bauman JM, Lawrie JF, Rocha OJ, Moore RC (2012) The structure of morphological and genetic diversity in natural populations of Carica papaya (Caricaceae) in Costa Rica. Biotropica 44(2):179–188

  • Campbell RJ, Ledesma N, Zill G, Herrera JC, Leon J (2010) Collecting Pouterias (Pouteria spp), Sapodilla (Manilkara zapota) and Caimito (Chrysophyllum cainito) for the creation of new markets. J Am Pomol Soc 64:24–27

    Google Scholar 

  • Carr DL (2008) Farm households and land use in a core conservation zone of the Maya Biosphere Reserve, Guatemala. Hum Ecol 36:231–248

    Article  Google Scholar 

  • Clement CR (1999) 1492 and the loss of Amazonian crop genetic resources I. The relation between domestication and human population decline. Econ Bot 53:188–202

    Article  Google Scholar 

  • Coe WR, Shook EM, Satterthwaite L (1986) The carved wooden lintels of Tikal. In Tikal Reports. The University Museum, The University of Pennsylvania, Philadelphia, 5–11

  • Collevatti RG, Grattapaglia D, Hay JD (2001) Population genetic structure of the endangered tropical tree species Caryocar brasiliense, based on variability at microsatellite loci. Mol Ecol 10:349–356

    Article  CAS  PubMed  Google Scholar 

  • Cook OF (1935) The Maya breadnut in southern Florida. Science 82:615–616

    Article  CAS  PubMed  Google Scholar 

  • Croft GKM (2012) Evolution and ecology during domestication in the neotropical fruit tree, Byrsonima crassifolia (Malpighiaceae). Dissertation, Washington University

  • Dick CW, Bermingham E, Lemes MR, Gribel R (2007) Extreme long distance dispersal of the lowland rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the Neotropics. Mol Ecol 16:3039–3049

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dunning N, Scarborough V, Valdez F Jr, Luzzadder-Beach S, Beach T, Jones JG (1999) Temple mountains, sacred lakes, and fertile fields: Ancient Maya landscapes in Northwestern Belize. Antiquity 73:650–60

    Google Scholar 

  • Dutech C, Maggia L, Tardy C, Joly HI, Jarne P (2003) Tracking a genetic signal of extinction-recolonization events in a neotropical tree species: Vouacapoua americana Aublet in French Guiana. Evolution 57:2753–2764

    Article  PubMed  Google Scholar 

  • Foerster CR, Vaughan C (2002) Home range, habitat use, and activity of Baird’s Tapir in Costa Rica. Biotropica 34:423–437

    Article  Google Scholar 

  • Folan WJ, Fletcher LA, Kintz ER (1979) Fruit, fiber, bark, and resin: social organization of a Maya urban center. Science 204:697–701

    Article  CAS  PubMed  Google Scholar 

  • Fontaine C, Lovett PN, Sanou H, Maley J, Bouvet J-M (2004) Genetic diversity of the Shea tree (Vitellaria paradoxa C.F. Gaertn), detected by RAPD and chloroplast microsatellite markers. Heredity 93:639–648

    Article  CAS  PubMed  Google Scholar 

  • Galindo-Tovar ME, Ogata-Aguilar N, Arzate-Fernández AM (2008) Some aspects of avocado (Persea americana Mill.) diversity and domestication in Mesoamerica. Genet Resour Crop Evol 55:441–450

    Article  Google Scholar 

  • García-Frapolli E, Ayala-Orozco B, Bonilla-Moheno M, Espadas-Manrique C, Ramos-Fernández G (2007) Biodiversity conservation, traditional agriculture and ecotourism: land cover/land use change projections for a natural protected area in the Northeastern Yucatan Peninsula, Mexico. Landsc Urban Plan 83:137–153

    Article  Google Scholar 

  • Glenn TC, Schable NA (2005) Isolating microsatellite DNA loci. Methods Enzymol 395:202–222

    CAS  PubMed  Google Scholar 

  • González-Soberanis C, Casas A (2004) Traditional management and domestication of Tempesquistle, Sideroxylon palmeri (Sapotaceae) in the Tehuacán-Cuicatlán Valley, Central Mexico. J Arid Environ 59:245–258

    Article  Google Scholar 

  • Gross BL, Olsen KM (2010) Genetic perspectives on crop domestication. Trends Plant Sci 15:529–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo J, Wang Y, Song C, Zhou J, Qiu L, Huang H, Wang Y (2010) A single origin and moderate bottleneck during domestication of soybean (Glycine max): implications from microsatellites and nucleotide sequences. Ann Bot 106:505–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hall P, Orrell LC, Bawa KS (1994) Genetic diversity and mating system in a tropical tree, Carapa guianensis (Meliaceae). Am J Bot 81:1104–1111

    Article  Google Scholar 

  • Hamrick JL, Godt MJ, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124

    Article  Google Scholar 

  • Hamrick JL, Murawski DA, Nason JD (1993) The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetatio 107(108):281–297

    Google Scholar 

  • Hardesty BD, Dick CW, Hamrick JL, Degen B, Hubbell SP, Bermingham E (2010) Geographic influence on genetic structure in the widespread neotropical tree Simarouba amara (Simaroubaceae): landscape genetic diversity of Simarouba amara. Trop Plant Bio 3:28–39

    Article  Google Scholar 

  • Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier M-H, Doligez A, Dutech C, Kremer A, LaTouche-Halle C, Troispoux V, Veron V, Degen B (2006) Fine-scale genetic structure and gene dispersal inferences in 10 neotropical tree species. Mol Ecol 15:559–571

    Article  CAS  PubMed  Google Scholar 

  • Heaton HJ, Whitkus R, Gómez-Pompa A (1999) Extreme ecological and phenotypic differences in the tropical tree chicozapote (Manilkara zapota (L) P Royen) are not matched by genetic divergence: a random amplified polymorphic DNA (RAPD) analysis. Mol Ecol 8:627–632

    Article  Google Scholar 

  • Heithaus ER, Fleming TH, Opler PA (1975) Foraging patterns and resource utilization in seven species of bats in a seasonal tropical forest. Ecology 56:841–854

    Article  Google Scholar 

  • Innan H, Kim Y (2004) Pattern of polymorphism after strong artificial selection in a domestication event. Proc Natl Acad Sci U S A 101:10667–10672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jha S, Dick CW (2010) Native bees mediate long-distance pollen dispersal in a shade coffee landscape mosaic. Proc Natl Acad Sci U S A 107:13760–13764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karling JS (1934) Dendrograph studies on Achras zapota in relation to the optimum conditions for tapping. Am J Bot 21:161–193

    Article  Google Scholar 

  • La Torre-Cuadros MLA, Islebe GA (2003) Traditional ecological knowledge and use of vegetation in Southeastern Mexico: a case study from Solferino, Quintana Roo. Biodivers Conserv 12:2455–2476

    Article  Google Scholar 

  • Lambert JDH, Arnason JT (1982) Ramón and Maya ruins: an ecological, not an economic, relation. Science 216:298–299

    Article  CAS  PubMed  Google Scholar 

  • Lemes MR, Gribel R, Proctor J, Grattapaglia D (2003) Population genetic structure of mahogany (Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon, based on variation at microsatellite loci: implications for conservation. Mol Ecol 12:2875–2883

    Article  PubMed  Google Scholar 

  • Lentz DL, Hockaday B (2009) Tikal timbers and temples: ancient Maya agroforestry and the end of time. J Archaeol Sci 36:1342–1353

    Article  Google Scholar 

  • Lewis PO, Zaykin D (2001) Genetic data analysis: computer program for the analysis of allelic data Version 10 (616c). http://www.eeb.uconn.edu/people/plewis/software.php/

  • Lundell CL (1933) Archeological discoveries in the Maya area. Proc Am Philos Soc 72:147–179

    Google Scholar 

  • Lundell CL (1937) The vegetation of Petén. Carnegie Institution of Washington, Washington, DC, pp 46–49

    Google Scholar 

  • Lundell CL (1938) Plants probably utilized by the Old Empire Maya of Petén and adjacent lowlands. Papers of the Michigan Academy of Science, Arts, and Letters 24:37-56

  • Malo SE (1967) A successful method for propagating sapodilla trees. Proc Fla State Hortic Soc 80:373–376

    Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez JG, Buckler E, Doebley J (2002) A single domestication for Maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A 99:6080–6084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller RP, Nair PKR (2006) Indigenous agroforestry systems in Amazonia: from prehistory to today. Agrofor Syst 66:151–164

    Article  Google Scholar 

  • Miller A, Schaal B (2005) Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea. Proc Natl Acad Sci U S A 102:12801–12806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller A, Schaal B (2006) Domestication and the distribution of genetic variation in wild and cultivated populations of the Mesoamerican fruit tree Spondias purpurea L. (Anacardiaceae). Mol Ecol 15:1467–1480

    Article  CAS  PubMed  Google Scholar 

  • Morton J (1987) Sapodilla. In: Morton JF (ed) Fruits of warm climates. ECHO Inc, Miami, pp 393–398

    Google Scholar 

  • Mosseler A, Major JE, Rajora OP (2003) Old-growth red spruce forests as reservoirs of genetic diversity and reproductive fitness. Theor Appl Genet 106:931–937

    CAS  PubMed  Google Scholar 

  • Motamayor JC, Risterucci AM, Lopez PA, Ortiz CF, Moreno A, Lanaud C (2002) Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity 89:380–386

    Article  CAS  PubMed  Google Scholar 

  • Mutchnick PA, McCarthy BC (1997) An ethnobotanical analysis of the tree species common to the subtropical moist forest of the Petén, Guatemala. Econ Bot 51:158–183

    Article  Google Scholar 

  • Nations JD (1992) Xateros, chicleros, and pimenteros: harvesting renewable tropical forest resources in the Guatemalan Petén. In: Redford KH, Padoch C (eds) Conservation of neotropical forests: working from traditional resource use. Columbia University Press, New York, pp 208–219

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novick RR, Dick CW, Lemes MR, Navarro C, Caccone A, Bermingham E (2003) Genetic structure of Mesoamerican populations of big-leaf mahogany (Swietenia macrophylla) inferred from microsatellite analysis. Mol Ecol 12:2885–2893

    Article  PubMed  Google Scholar 

  • O’Farrill G, Calmé S, Gonzalez A (2006) Manilkara zapota: a new record of a species dispersed by tapirs. Tapir Conserv 15:32–35

    Google Scholar 

  • Parker KC, Trapnell DW, Hamrick JL, Hodgsons WC, Parker AJ (2010) Inferring ancient Agave cultivation practices from contemporary genetic patterns. Mol Ecol 19:1622–1637

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pennington TD (1991) The Genera of Sapotaceae. Royal Botanic Gardens and The New York Botanical Garden, New York

    Google Scholar 

  • Petersen JJ, Parker IM, Potter D (2012) Origins and close relatives of a semi-domesticated neotropical fruit tree: Chrysophyllum cainito (Sapotaceae). Am J Bot 99:585–604

    Article  PubMed  Google Scholar 

  • Programme for Belize (2011) Programme for Belize conservation. http://www.pfbelize.org/conservation/. Accessed 10 Sept 2013

  • Ralph EK (1965) Review of radiocarbon dates from Tikal and the Maya calendar correlation problem. Am Antiq 30:421–427

    Article  Google Scholar 

  • Ramos-Fernández G, Ayala-Orozco B (2002) Population size and habitat use of spider monkeys at Punta Laguna, Mexico. In: Marsh LK (ed) Primates in fragments: ecology and conservation. Plenum-Kluwer, Dordrecht, the Netherlands, pp 191–210

    Google Scholar 

  • Reining C, Heinzman R, Madrid MC, López S, Solórzano A (1992) Non timber forest products of the Maya Biosphere Reserve, Petén, Guatemala. Conservation International Foundation, Washington, DC

    Google Scholar 

  • Reyna-Hurtado R, Rojas-Flores E, Tanner GW (2009) Home range and habitat preferences of white-lipped peccaries (Tayassupecari) in Calakmul, Campeche, Mexico. J Mammal 90:1199–1209

    Article  Google Scholar 

  • Rico-Gray V, Chemás A, Mandujano S (1991) Uses of tropical deciduous forest species by the Yucatecan Maya. Agrofor Syst 14:149–161

    Article  Google Scholar 

  • Rieger J (2009) Genetic and morphological diversity of natural populations of Carica papaya. Thesis, Miami University

  • Ross NJ (2011) Modern tree species composition reflects ancient Maya “Forest Gardens” in Northwest Belize. Ecol Appl 21:5–84

    Article  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Sader SA, Sever T, Smoot JC, Richards M (1994) Forest change estimates for the Northern Petén Region of Guatemala: 1986-1990. Hum Ecol 22:317–332

    Article  Google Scholar 

  • Salafsky N, Dugelby BL, Terborgh JW (1993) Can extractive reserves save the rain forest? An ecological and socioeconomic comparison of nontimber forest product extraction systems in Peten, Guatemala, and West Kalimantan, Indonesia. Conserv Biol 7:39–52

    Article  Google Scholar 

  • Salinas-Peba L, Parra-Tabla V (2007) Phenology and pollination of Manilkara zapota in forest and homegardens. For Ecol Manage 248:136–142

    Article  Google Scholar 

  • Savolainen O, Pyhäjärvi T (2007) Genomic diversity in forest trees. Curr Opin Plant Biol 10:162–167

    Article  CAS  PubMed  Google Scholar 

  • Scarborough VL, Becher M, Baker J, Harris G, Valdez F Jr (1995) Water and land at the Ancient Maya community of La Milpa, Belize. Lat Am Antiq 6:98–119

    Article  Google Scholar 

  • Sereno ML, Albuquerque PSB, Vencovsky R, Figueira A (2006) Genetic diversity and natural population structure of cacao (Theobroma cacao L) from the Brazilian Amazon evaluated by microsatellite markers. Conserv Genet 7:13–24

    Article  CAS  Google Scholar 

  • Sheets P, Lentz D, Piperno D, Jones J, Dixon C, Maloof G, Hood A (2012) Ancient manioc agriculture south of the Ceren Village, El Salvador. Lat Am Antiq 23:259–281

    Article  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  • Standley PC, Record SJ (1936) The forest and flora of British Honduras. Field Museum of Natural History Publications, Botany, Volume XII. Chicago

  • Standley PC, Williams LO (1967) Flora of Guatemala. Fieldiana: Botany 24, part VIII, Number 3, pp 211–226. Field Museum of Natural History, Chicago

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Thompson KM (2013) Biodiversity in forests of the ancient Maya lowlands and one of its dominant trees, Manilkara zapota (Sapotaceae): ecological and anthropogenic implications. Dissertation, University of Cincinnati

  • Turner BL II, Miksicek CH (1984) Economic plant species associated with prehistoric agriculture in the Maya lowlands. Econ Bot 38:179–193

    Article  Google Scholar 

  • Urquiza-Haas T, Peres CA, Dolman PM (2009) Regional scale effects of human density and forest disturbance on large-bodied vertebrates throughout the Yucatán Peninsula, Mexico. Biol Conserv 142:134–148

    Article  Google Scholar 

  • Vavilov NI (1992) In: Dorofeyev VF (ed) Origin and geography of cultivated plants, translated by Doris Löve. Cambridge University Press

  • Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci U S A 99:9650–9655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Weterings MJA, Weterings-Schonck SM, Vester HFM, Calmé S (2008) Senescence of Manilkara zapota trees and implications for large frugivorous birds in the Southern Yucatan Peninsula, Mexico. For Ecol Manage 256:1604–1611

    Article  Google Scholar 

  • White GM, Boshier DH, Powell W (1999) Genetic variation within a fragmented population of Swietenia humilis Zucc. Mol Ecol 8:1899–1909

    Article  CAS  PubMed  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Genetic variation within a fragmented population of Swietenia humilis Zucc. Heredity 82:117–125

    Article  PubMed  Google Scholar 

  • Wright SI, Gaut BS (2005) Molecular population genetics and the search for adaptive evolution in plants. Mol Biol Evol 22:506–519

    Article  CAS  PubMed  Google Scholar 

  • Yang GP, SaghaiMaroof MA, Xu CG, Zhang Q, Biyashev RM (1994) Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet 245:187–194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Angela Hood and four local workers from Guatemala and Belize assisted with field collections; Megan Philpott and Kathryn Little provided assistance in the laboratory. Cultivar samples were provided by Brian Irish at the US Department of Agriculture Tropical Agricultural Research Station, Mayaguez, Puerto Rico, and Richard Campbell from Fairchild Tropical Botanic Garden. The National Science Foundation (grant number 0810118), the Wenner-Gren Foundation (grant number 7799), and the Alphawood Foundation supported this project which began at Tikal where we first collected M. zapota samples. Lab and field work were supported by the Garden Club of America Tropical Botany Award, the Botanical Society of America, Programme for Belize Archaeological Project, the Weiman Wendel Benedict Fund, Graduate Student Governance Association at the University of Cincinnati (UC), and the Department of Biological Sciences at UC. To all of these and three anonymous reviewers, we extend our sincere appreciation.

Data archiving statement

GenBank accession numbers for developed loci are included in Table s1. Accession numbers of samples of clonally propagated cultivars are included in Online Resource 1. Databases have been generated in Excel for all Manilkara zapota leaf samples by population, age category, and identification number with genotypes at all nine microsatellite loci. These include a separate file for geographic coordinates by sample ID, a text file used for GDA input, and a ReadMe file describing each spreadsheet. These will be stored in Dyrad; an account has already been established for Kim Thompson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Culley.

Additional information

Communicated by W. Ratnam

This article is part of the Topical Collection on Germplasm Diversity

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, K.M., Culley, T.M., Zumberger, A.M. et al. Genetic variation and structure in the neotropical tree, Manilkara zapota (L) P. Royen (Sapotaceae) used by the ancient Maya. Tree Genetics & Genomes 11, 40 (2015). https://doi.org/10.1007/s11295-015-0867-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0867-9

Keywords

Navigation