Skip to main content

Genetic versus environmental contributions to variation in seedling resprouting in Nothofagus obliqua

Abstract

Resprouting is an almost universal functional trait in temperate angiosperms and confers persistence at an individual level after the loss of above-ground biomass. The importance of genetic versus environmental sources of intraspecific variation in resprouting traits is largely unknown. We conducted two genetic field trials, 400 m apart in altitude, in order to sequentially assess seedling resprouting in four environmentally contrasting Argentinean populations of Nothofagus obliqua Mirb. (Oerst). We also performed one nursery test to determine whether populations differed in early root/shoot biomass partition, a key trade-off affecting resprouting. Initial resprouting vigour and final survival were higher in our warmer test site, located 300 m below the core range of the species. The main contrasts between populations were found for pre-clipping seedling size and resprouting profusion, the latter trait showing a clear trade-off with resprouting vigour. Site × population interactions were due mainly to the behaviour of the highest altitude population, suggesting its divergent adaptive trajectory and higher plasticity for resprouting traits. Within populations, trait heritability was low, in general. Episodic frost, which may limit resprouting vigour and final success, had a lower incidence in the altitudinal and xeric limit populations. Overall, our work revealed genetic variation between populations of N. obliqua in traits that determine the success of seedling resprouting, probably associated with divergent selection. Low trait heritability suggests limited in situ micro-evolutionary capacities for resprouting traits under ongoing climate warming; phenotypic plasticity may play an important role in population persistence at the low positions of the elevation gradients N. obliqua currently inhabits.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    Seedling resprouting may be especially important to population fitness in species that resprout but do not propagate free-living ramets such as N. obliqua. Clonality can play a major role in micro-evolution (e.g. Dodd et al. 2012; Pan and Price 2002)

  2. 2.

    The high, unexplained variances of the ln Sh − ln RV relationships can be attributed to variation in traits that are important for resprouting but not measured here, such as starch and nutrient concentration (e.g. Moreira et al. 2012), which usually span orders of magnitude within tree classes. The highest determination (r 2 = 0.58) corresponded to the allometric fit of Epulauquen in Golondrinas test (Fig. 3b), suggesting lower variance for the above-mentioned or other unmeasured explanatory traits.

References

  1. Azpilicueta MM, Varela S, Martínez A, Gallo L (2010) Manual de viverización, cultivo y plantación de roble pellín en el norte de la región Andino Patagónica. Ediciones INTA, Buenos Aires

    Google Scholar 

  2. Azpilicueta MM, Gallo LA, van Zonneveld M, Thomas E, Moreno C, Marchelli P (2013) Management of Nothofagus genetic resources: definition of genetic zones based on a combination of nuclear and chloroplast marker data. For Ecol Manag 302:414–424

    Article  Google Scholar 

  3. Azpilicueta MM, Pastorino MJ, Puntieri J, Barbero F, Martinez-Meier A, Marchelli P, Gallo L (2014) Robles in Lagunas de Epulauquen, Argentina: previous and recent evidence of their distinctive character. Rev Chil Hist Nat 87:24. doi:10.1186/s40693-014-0024-0

    Article  Google Scholar 

  4. Baayen RH (2011) languageR: Data sets and functions with “Analyzing Linguistic Data: A practical introduction to statistics”. R package version 1.2. http://CRAN.R-project.org/package=languageR

  5. Baayen RH, Davidson D, Bates D (2008) Mixed-effects modelling with crossed random effects for subjects and items. J Mem Lang 59:390–412

    Article  Google Scholar 

  6. Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-39. http://CRAN.R-project.org/package=lme4

  7. Bellingham PJ, Sparrow AD (2000) Resprouting as a life history strategy in woody plant communities. Oikos 89:409–416

    Article  Google Scholar 

  8. Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51

    Article  PubMed  Google Scholar 

  9. Burton AJ, Pregitzer KS (2003) Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine. Tree Physiol 23:273–280

    Article  PubMed  Google Scholar 

  10. Clarke PJ, Knox KJE, Wills KE, Campbell M (2005) Landscape patterns of woody plant response to crown fire: disturbance and productivity influence sprouting ability. J Ecol 93:544–555

    Article  Google Scholar 

  11. Clarke PJ, Lawes MJ, Midgley JJ, Lamont BB, Ojeda F, Burrows GE, Enright NJ, Knox KJ (2013) Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytol 197:19–35

    Article  CAS  PubMed  Google Scholar 

  12. Dean A, Voss D (1999) Design and analysis of experiments. Springer-Verlag, New York, pp 387–395

    Book  Google Scholar 

  13. Del Tredici P (2001) Sprouting in temperate trees: a morphological and ecological review. Bot Rev 67:121–140

    Article  Google Scholar 

  14. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/

  15. Dodd RS, Mayer W, Nettel A, Afzal-Rafii Z (2012) Clonal growth and fine-scale genetic structure in tanoak (Notholithocarpus densiflorus: Fagaceae). J Hered 104:105–114

    Article  PubMed  Google Scholar 

  16. Donoso Zegers C (1993) Bosques templados de Chile y Argentina. Variación, estructura y dinámica. Editorial Universitaria, Santiago de Chile

  17. Falconer S, Mackay T (1996) Introduction to quantitative genetics. Longman, New York, p 180

    Google Scholar 

  18. Falster DS, Westoby M (2005) Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession. Oikos 111:57–66

  19. Faraway J (2006) Extending the linear model with R: generalized linear, mixed effects and non-parametric regression models. Chapman Hall, Florida, p 158

    Google Scholar 

  20. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html

  21. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  22. Hyndman RJ, Fan Y (1996) Sample quantiles in statistical packages. Am Stat 50:361–365

    Google Scholar 

  23. Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. PNAS 105:11823–11826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Laureano RG, Lazo YO, Linares JC, Luque A, Martínez F, Seco JI, Merino J (2008) The cost of stress resistance: construction and maintenance costs of leaves and roots in two populations of Quercus ilex. Tree Physiol 28:1721–1728

    Article  CAS  PubMed  Google Scholar 

  25. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer

  26. Markgraf V, Whitlock C, Anderson RS, García A (2009) Late Quaternary vegetation and fire history in the northernmost Nothofagus forest region: Mallín Vaca Lauquen, Neuquén Province, Argentina. J Quat Sci 24:248–258

    Article  Google Scholar 

  27. Moreira B, Tormo J, Pausas JG (2012) To resprout or not to resprout: factors driving intraspecific variability in resprouting. Oikos 121:1577–1584

    Article  Google Scholar 

  28. Niklas KJ (2004) Plant allometry: is there a grand unifying theory? Biol Rev 79:871–889

    Article  PubMed  Google Scholar 

  29. O’Hara RB, Merilä J (2005) Bias and precision in Q ST estimates: problems and some solutions. Genetics 171:1331–1339

    Article  PubMed Central  PubMed  Google Scholar 

  30. Pan JJ, Price JS (2002) Fitness and evolution in clonal plants: the impact of clonal growth. Evol Ecol 15:583–600

    Article  Google Scholar 

  31. Paula S, Pausas JG (2006) Leaf traits and resprouting ability in the Mediterranean Basin. Funct Ecol 20:941–947

    Article  Google Scholar 

  32. Paula S, Pausas JG (2011) Root traits explain different foraging strategies between resprouting life histories. Oecologia 165:321–331

    Article  PubMed  Google Scholar 

  33. Pausas JG, Verdú M (2005) Plant persistence traits in fire-prone ecosystems of the Mediterranean Basin: a phylogenetic approach. Oikos 109:196–202

    Article  Google Scholar 

  34. Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50

    Article  CAS  PubMed  Google Scholar 

  35. Puntieri JG, Grosfeld JE, Stecconi M, Brion C, Azpilicueta MM, Gallo L (2006) Desarrollo temprano del roble (Nothofagus obliqua): un análisis arquitectural de procedencias de Argentina. Bosque 27:44–51

    Google Scholar 

  36. Reich PB (2002) Root:shoot relations: optimality in acclimation and adaptation or the “emperor’s new clothes”? In: Waisel Y, Amram E, Kafkafi U (eds) Plant roots. The hidden half, 3rd edn. Marcel Dekker, New York, pp 205−220

  37. Sabatier Y, Azpilicueta MM, Marchelli P, González-Peñalba M, Lozano L, García L, Martínez A, Gallo L, Umaña F, Bran D, Pastorino MJ (2011) Distribución natural de Nothofagus alpina y Nothofagus obliqua (Nothofagaceae) en Argentina, dos especies de primera importancia forestal de los bosques templados norpatagónicos. Boletín de la Sociedad Argentina de Botánica 46:131–138

    Google Scholar 

  38. Sahli HF, Conner JK, Shaw FH, Howe S, Lale A (2008) Adaptive differentiation and quantitative traits in the globally distributed weed, wild radish (Raphanus raphanistrum). Genetics 180:945–955

    Article  PubMed Central  PubMed  Google Scholar 

  39. Schwilk DW, Ackerly DD (2005) Is there a cost to resprouting? Seedling growth rate and drought tolerance in sprouting and nonsprouting Ceanothus (Rhamnaceae). Am J Bot 92:404–410

    Article  PubMed  Google Scholar 

  40. Spitze K (1993) Population structure in Daphnia obtusa: quantitative genetic and allozyme variation. Genetics 135:367–374

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Squillace AE (1974) Average genetic correlation among offspring from open-pollinated forest trees. Silvae Genetica 23:149–56

    Google Scholar 

  42. Veblen TT, Donoso C, Kitzberger T, Rebertus AJ (1996) Ecology of southern Chilean and Argentinean Nothofagus forests. In: Veblen TT, Hill R, Read J (eds) The ecology and biogeography of Nothofagus forests. Yale University Press, New Haven, pp 293–353

    Google Scholar 

  43. Vesk PA, Westoby M (2004) Sprouting ability across diverse disturbances and vegetation types worldwide. J Ecol 92:310–320

    Article  Google Scholar 

  44. Visscher P, Hill W, Wray N (2008) Heritability in the genomics era- concepts and misconceptions. Nature Rev Genetics 9:255–266

    Article  CAS  Google Scholar 

  45. Warnes GR (2013) gmodels: various R programming tools for model fitting. R package version 2.15.4, http://CRAN.R-project.org/package=gmodels/

  46. Whitlock MC (2008) Evolutionary inference from Q ST. Mol Ecol 17:1885–1896

    Article  PubMed  Google Scholar 

  47. Whitlock C, Bianchi MM, Bartlein PJ, Markgraf V, Marlon J, Walsh M, McCoy N (2006) Postglacial vegetation, climate, and fire history along the east side of the Andes (lat 41–42.5 S) Argentina. Quat Res 66:187–201

    Article  Google Scholar 

  48. Wright S (1951) The genetic structure of populations. Ann Eugen 15:323–354

    Article  CAS  PubMed  Google Scholar 

  49. Zar J (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

We are deeply grateful to the reviewers of the first version of this article, who contributed very precise, constructive suggestions. We thank Mario Huentú and Alejandro González for field assistance. Seed collection and field trial installation were financed with the projects ‘INTA-Native tree species domestication program’ and ‘Sustainable Forest Plantations (BIRF LN 7520 AR)’.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alejandro Gabriel Aparicio.

Additional information

Communicated by S. C. González-Martínez

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aparicio, A.G., Zuki, S.M., Azpilicueta, M.M. et al. Genetic versus environmental contributions to variation in seedling resprouting in Nothofagus obliqua . Tree Genetics & Genomes 11, 23 (2015). https://doi.org/10.1007/s11295-015-0847-0

Download citation

Keywords

  • Mediterranean climate
  • Southern angiosperms
  • Fitness traits
  • Population differentiation
  • Heritability