Tree Genetics & Genomes

, 11:817 | Cite as

Fine-scale environmental variation contributes to introgression in a three-species spruce hybrid complex

  • Jill A. HamiltonEmail author
  • Amanda R. De la Torre
  • Sally N. Aitken
Original Paper


Hybridization is common for many forest trees, where weak barriers to reproduction obscure species boundaries. We characterized the genomic structure of Picea populations comprising three species spanning two well-known contact zones, the Picea sitchensis × Picea glauca and the P. engelmannii × P. glauca hybrid zones, using a set of 71 candidate-gene single nucleotide polymorphisms. The genetic structure of populations suggests a complex genomic architecture shaped by interspecific gene flow and strong environmental selection, with increased genetic diversity in hybrids. The presence of admixture among all three species suggests that three-way hybrids with mixed ancestry occur where species ranges overlap in transitional environments. Significant clinal variation and associations with climatic variables (including continentality, temperature, and precipitation) differ between hybrid zones, indicating that individual species and their hybrids are adapted to distinct environmental niches. Allele–environmental association analysis revealed that most of the candidate genes with evidence of selection were unique to either the Sitka × white or the Engelmann × white hybrid zones, with few shared between these zones. Management of these widespread and diverse gene pools will be best served through development of climate-based seed transfer, with recommended seed sources informed by a combination of genetic and climatic information for future climates.


Spruce Admixture Hybrid zones Climate change Local adaptation 



We thank John King and Barry Jaquish from the British Columbia Ministry of Forests, Lands and Natural Resource Operations for establishing the common garden trials and providing material, and Christine Chourmouzis, Lisa Erdle, Nina Lobo, Jon Sweetman, Pia Smets, and Jordan Bemmels for field assistance. We also thank Eric Frichot and Graham Coop for valuable suggestions on the environmental association analyses. Particular thanks to Santiago Gonzalez-Martinez and anonymous referees for thoughtful suggestions that have greatly improved the manuscript. This work was supported by Genome British Columbia, Genome Canada, the Province of British Columbia and the British Columbia Forest Genetics Council (grant to S.N.A.), the Natural Science and Engineering Research Council of Canada (NSERC Discovery grant to S.N.A.), an NSERC Canada Graduate Scholarship to J.H., and UBC Fellowships to J.H and A.R.T.

Data archiving statement

SNP data for the Picea glauca × P. engelmannii hybrid zone is available at Dryad doi: 10.5061/dryad.7h65f. Population origin and SNP genotypes for the Picea sitchensis × P. glauca are available at Dryad doi:  10.5061/dryad.s11b6.

Supplementary material

11295_2014_817_MOESM1_ESM.xlsx (49 kb)
Table S1 (XLSX 49 kb)
11295_2014_817_MOESM2_ESM.xlsx (38 kb)
Table S2 (XLSX 37 kb)
11295_2014_817_MOESM3_ESM.docx (130 kb)
Table S3 (DOCX 130 kb)
11295_2014_817_MOESM4_ESM.xlsx (50 kb)
Table S4 (XLSX 49 kb)
11295_2014_817_MOESM5_ESM.pdf (107 kb)
Fig. S1 Population genetic structure analyses based on ten replicate Structure runs for Sitka, white, Engelmann, and admixed spruce. Mean ln P[D] (dotted line) and K genetic clusters (solid line) for K = 1–10. (PDF 106 kb)
11295_2014_817_Fig6_ESM.gif (54 kb)
Fig. S2

Loading plot of SNP contributions to the first discriminant principle component function (a) and second discriminant principle component function (b) based on 71 SNPs across the Sitka, white, Engelmann, and admixed populations. The gray line indicates the 95% quantile. (GIF 54 kb)

11295_2014_817_MOESM6_ESM.tif (8 mb)
High Resolution Image (TIFF 8154 kb)
11295_2014_817_Fig7_ESM.gif (608 kb)
Fig. S3

(GIF 607 kb)

11295_2014_817_MOESM7_ESM.tif (6.5 mb)
High Resolution Image (TIFF 6641 kb)


  1. Aitken SN, Whitlock MC (2013) Assisted gene flow to facilitate local adaptation to climate change. Ann Rev Ecol Evol Syst 44:367–388Google Scholar
  2. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111. doi: 10.1111/j.1752-4571.2007.00013.x CrossRefPubMedCentralPubMedGoogle Scholar
  3. Alberto F et al. (2013) Potential for evolutionary responses to climate change—evidence from tree populations. Glob Chang Biol 19:1645–1661Google Scholar
  4. Anderson JT, Lee C, Rushworth CA, Colautti RI, Mitchell-Olds T (2013) Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol Ecol 22:699–708CrossRefPubMedCentralPubMedGoogle Scholar
  5. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New YorkGoogle Scholar
  6. Barrett R, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44. doi: 10.1016/j.tree.2007.09.008 CrossRefPubMedGoogle Scholar
  7. Bennuah SY, Wang T, Aitken SN (2004) Genetic analysis of the Picea sitchensis × glauca introgression zone in British Columbia. For Ecol Manag 197:65–77. doi: 10.1016/j.foreco.2004.05.005 CrossRefGoogle Scholar
  8. Bergelson J, Roux F (2010) Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nat Rev Genet 11:867–879CrossRefPubMedGoogle Scholar
  9. Bouille M, Bousquet J (2005) Trans-species shared polymorphisms at orthologous nuclear gene loci among distant species in the conifer Picea (Pinaceae): implications for the long-term maintenance of genetic diversity in trees. Am J Bot 92:63–73CrossRefPubMedGoogle Scholar
  10. Bouillé M, Senneville S, Bousquet J (2011) Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus. Picea Tree Genet Genomes 7:469–484. doi: 10.1007/s11295-010-0349-z CrossRefGoogle Scholar
  11. Carlson CS et al. (2013) Generalization and dilution of association results from European GWAS in populations of non-European Ancestry: the PAGE Study. PLoS Biol 11:e1001661Google Scholar
  12. Chen M, Markham JE, Cahoon EB (2012) Sphingolipid 8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis The. Plant J 69:769–781CrossRefPubMedGoogle Scholar
  13. Dauwe R, Holliday JA, Aitken S, Mansfield SD (2012) Metabolic dynamics during autumn cold acclimation within and among populations of Sitka spruce (Picea sitchensis). New Phytol 194:192–205CrossRefPubMedGoogle Scholar
  14. De la Torre AR, Ingvarsson PK, Aitken SN (2014a) Genetic architecture and genomic patterns of gene flow between hybridizing species of Picea. HeredityGoogle Scholar
  15. De la Torre AR, Roberts DR, Aitken S (2014b) Genome-wide admixture and ecological niche modeling reveal the maintenance of species boundaries despite long history of interspecific gene flow. Mol Ecol 23:2046–2059CrossRefGoogle Scholar
  16. De la Torre AR, Wang T, Jaquish BC, Aitken SN (2014c) Adaptation and exogenous selection in a Picea glauca × P. engelmannii hybrid zone: implications for forest management under climate change. New Phytol 201:123–139Google Scholar
  17. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  18. Earl DA, von Holdt BM (2012) Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  19. Eckert AJ, Bower AD, González-Martínez SC, Wegrzyn JL, Coop G, Neale DB (2010) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19:3789–3805CrossRefPubMedGoogle Scholar
  20. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  21. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedCentralPubMedGoogle Scholar
  22. Fan J et al (2006) Illumina universal bead arrays. Methods Enzymol 410:57–73. doi: 10.1016/s0076-6879(06)10003-8 CrossRefPubMedGoogle Scholar
  23. Fogelqvist J, Niittyvuopio A, Agren J, Savolainen O, Lascoux M (2010) Cryptic population genetic structure: the number of inferred clusters depends on sample size. Mol Ecol Resour 10:314–323CrossRefPubMedGoogle Scholar
  24. Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM (2011) A map of local adaptation in Arabidopsis thaliana. Science 334:86–89CrossRefPubMedGoogle Scholar
  25. Francois O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Mol Ecol Resour 10:773–784CrossRefPubMedGoogle Scholar
  26. Frichot E, Schovile SD, Bouchard G, Francois O (2013) Test for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 30:1687–1699CrossRefPubMedCentralPubMedGoogle Scholar
  27. Grattapaglia D, Silva-Junior OB, Kirst M, Lima B, Faria DA, Pappas G (2011) High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism, and transferability across species. BMC Plant Biol 11:65CrossRefPubMedCentralPubMedGoogle Scholar
  28. Hamilton JA, Aitken SN (2013) Genetic and morphological structure of a spruce hybrid (Picea sitchensis × P. glauca) zone along a climatic gradient. Am J Bot 100:1651–1662CrossRefPubMedGoogle Scholar
  29. Hamilton JA, Lexer C, Aitken SN (2013a) Differential introgression reveals candidate genes for selection across a spruce (Picea sitchensis × P. glauca) hybrid zone. New Phytol 197:927–938CrossRefPubMedGoogle Scholar
  30. Hamilton JA, Lexer C, Aitken SN (2013b) Genomic and phenotypic architecture of a spruce hybrid zone (Picea sitchensis × P. glauca). Mol Ecol 22:827–841CrossRefPubMedGoogle Scholar
  31. Hamilton JA, Okada M, Korves TM, Schmitt J (2014) The role of climate adaptation in colonization success in Arabidopsis thaliana. Mol EcolGoogle Scholar
  32. Hancock AM et al (2011) Adaptation to climate across the Arabidopsis thaliana genome. Science 334:83–86CrossRefPubMedGoogle Scholar
  33. Haselhorst MSH, Buerkle C (2013) Population genetic structure of Picea engelmannii, P. glauca and their previously unrecognized hybrids in the central Rocky Mountains. Tree Genet Genomes 9(3):669–681Google Scholar
  34. Hellmann J, Pineda-Krch M (2007) Constraints and reinforcement on adaptation under climate change: selection of genetically correlated traits. Biol Conserv 137:599–609. doi: 10.1016/j.biocon.2007.03.018 CrossRefGoogle Scholar
  35. Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CrossRefPubMedGoogle Scholar
  36. Holliday JA, Ralph SG, White R, Bohlmann J, Aitken SN (2008) Global monitoring of autumn gene expression within and among phenotypically divergent populations of Sitka spruce (Picea sitchensis). New Phytol 178:103–122. doi: 10.1111/j.1469-8137.2007.02346.x CrossRefPubMedGoogle Scholar
  37. Jombart T (2008) adegenet: a R package for multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CrossRefPubMedGoogle Scholar
  38. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94CrossRefPubMedCentralPubMedGoogle Scholar
  39. Jones RC, Steane DA, Lavery M, Vaillancourt R, Potts B (2013) Multiple evolutionary processes drive the patterns of genetic differentiation in a forest tree species complex. Ecol Evol 3:1–17CrossRefPubMedCentralGoogle Scholar
  40. Kanno Y, Vokoun JC, Letcher BH (2011) Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks. Mol Ecol 20:3711–3729CrossRefPubMedGoogle Scholar
  41. Ketcheson MV, Braudmandl TF, Meidinger D, Utzig G, Demarchi DA, Wikeem BM (1991) Interior Cedar-Hemlock Zone. Victoria, BCGoogle Scholar
  42. Lepais O, Gerber S (2010) Reproductive patterns shape introgression dynamics and species succession within the European white oak species complex. Evolution 65:156–170CrossRefPubMedGoogle Scholar
  43. Lexer C, Henize B, Alia R, Rieseberg LH (2004) Hybrid zones as a tool for identifying adaptive genetic variation in outbreeding forest trees: lessons from wild annual sunflowers (Helianthus spp). For Ecol Manag 197:49–64. doi: 10.1016/j.foreco.2004.05.004 CrossRefGoogle Scholar
  44. Martinsen GD, Whitham TG, Turek RJ, Keim P (2001) Hybrid populations selectively filter gene introgression between species. Evolution 55:1325–1335CrossRefPubMedGoogle Scholar
  45. Mimura M, Aitken SN (2007) Increased selfing and decreased effective pollen donor number in peripheral relative to central populations in Picea sitchensis (Pinaceae). Am J Bot 94:991–998CrossRefPubMedGoogle Scholar
  46. Mir C, Toumi L, Jarne P, Sarda V, Di Giusto F, Lumaret R (2006) Endemic North African Quercus afares Pomel originates from hybridisation between two genetically very distant oak species (Q. suber L. and Q. canariensis Willd.): evidence from nuclear and cytoplasmic markers. Heredity 96:175–184CrossRefPubMedGoogle Scholar
  47. Moran EV, Willis JH, Clark JS (2012) Genetic evidence for hybridization in red oaks (Quercus sect. Lobatae, Fagaceae). Am J Bot 99:92–100CrossRefPubMedGoogle Scholar
  48. Neale D, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330CrossRefPubMedGoogle Scholar
  49. Nkongolo K, Michael P, Demers T (2005) Application of ISSR, RAPD, and cytological markers to the certification of Picea mariana, P. glauca, and P. engelmannii trees and their putative hybrids. Genome 48:302–311CrossRefPubMedGoogle Scholar
  50. Pavy N et al (2008) Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics 9:21. doi: 10.1186/1471-2164-9-21 CrossRefPubMedCentralPubMedGoogle Scholar
  51. Pavy N et al (2013) Development of high-density SNP genotyping arrays for white spruce (Picea glauca) and transferability to subtropical and nordic congeners. Mol Ecol Resour 13:324–336CrossRefPubMedGoogle Scholar
  52. Peakall R, Smouse PE (2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  53. Pelgas B, Bousquet J, Meirmans PG, Ritland K, Isabel N (2011) QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments. BMC Genomics 12:145. doi: 10.1186/1471-2164-12-145 CrossRefPubMedCentralPubMedGoogle Scholar
  54. Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree annual review of ecology. Evol Syst 37:187–214. doi: 10.1146/annurev.ecolsys.37.091305.110215 CrossRefGoogle Scholar
  55. Petit RJ et al (2013) Fagaceae trees as models to integrate ecology, evolution and genomics. New Phytol 197:369–371CrossRefPubMedGoogle Scholar
  56. Pojar J, Klinka K, Demarchi DA (1991) Coastal Western Hemlock Zone. Victoria, BCGoogle Scholar
  57. Porth I, Hamberger B, White R, Ritland K (2011) Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway. BMC Genomics 12:608CrossRefPubMedCentralPubMedGoogle Scholar
  58. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  59. Ran J-H, Wei X-X, Wang X-Q (2006) Molecular phylogeny and biogeography of Picea (Pinaceae): implications for phylogeographical studies using cytoplasmic haplotypes. Mol Phylogenet Evol 41:405–419. doi: 10.1016/j.ympev.2006.05.039 CrossRefPubMedGoogle Scholar
  60. R Development Core Team (2014) R: a language and environment for statistical computer. Vienna.
  61. Richardson AD, Berlyn GP, Ashton PMS, Thadani R, Cameron IR (2000) Foliar plasticity of hybrid spruce in relation to crown position and stand age. Can J Bot 78:305–317Google Scholar
  62. Shen R et al (2005) High-throughput SNP genotyping on universal bead arrays. Mutat Res Fundam Mol Mech Mutagen 573:70–82. doi: 10.1016/j.mrfmmm.2004.07.022 CrossRefGoogle Scholar
  63. Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol 35: 543–584Google Scholar
  64. Streiff R, Ducousso A, Lexer C, Steinkellner H, Gloessl J, Kremer A (1999) Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Mol Ecol 8:831–841CrossRefGoogle Scholar
  65. Sutton BCS , Pritchard SC, Gawley JR, Newton CH (1994) Analysis of Sitka spruce - interior spruce introgression in British Columbia using cytoplasmic and nuclear DNA probes. Can J For Res 24:278–285Google Scholar
  66. Wang T, Hamann A, Spittlehouse DL, Murdock TQ (2012) ClimateWNA—high resolution spatial climate data for western North America. J Appl Meteorol Climatol 51:16–29CrossRefGoogle Scholar
  67. Whittemore AT, Schaal BA (1991) Interspecific gene flow in sympatric oaks. Proc Natl Acad Sci 88:2540–2544CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jill A. Hamilton
    • 1
    • 2
    Email author
  • Amanda R. De la Torre
    • 1
    • 3
  • Sally N. Aitken
    • 1
  1. 1.Centre for Forest Conservation Genetics, Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  3. 3.Department of Ecology and Environmental ScienceUmea UniversityUmeaSweden

Personalised recommendations