Tree Genetics & Genomes

, 11:816 | Cite as

Targeted re-sequencing of five Douglas-fir provenances reveals population structure and putative target genes of positive selection

  • Thomas Müller
  • Fabian Freund
  • Henning Wildhagen
  • Karl J. Schmid
Original Paper

Abstract

Douglas-fir (Pseudotsuga menziesii) occurs in a coastal and an interior variety that differ in drought tolerance and other adaptive traits. To characterize genome-wide levels of genetic diversity in coding regions and to identify genes involved in local adaptation, we used targeted sequence capture to re-sequence 72 trees representing one interior and four coastal provenances. A custom NimbleGen sequence capture array was designed from 57,110 putative unique transcripts (PUTs) to enrich genomic sequencing libraries for these regions. Sequence analysis revealed that almost 100 % of target regions were captured and sequenced in at least one individual. We found 79,910 single nucleotide polymorphisms (SNPs) whose genotypes were called in all individuals. The data confirmed genetic differentiation between interior and coastal provenances and revealed little differentiation between coastal provenances. The nucleotide diversity of the total sample was estimated as π=0.0032, which is at the lower end of values observed in conifers. Outlier tests of genetic differentiation identified 58 high-confidence candidate genes for directional selection with a broad functional diversity. A priori defined genes involved in drought tolerance showed a significantly higher genetic differentiation between interior and coastal Douglas-fir suggesting a different evolution despite a low level of polymorphism. The observed data showed a reduced level of polymorphisms with low minor allele frequencies compared to standard demographic models with two populations and migration. Targeted sequence capture is an efficient method to characterize the genetic diversity of conifer trees with a complex genome.

Keywords

Sequence capture Douglas-fir Genetic diversity Natural selection 

Supplementary material

11295_2014_816_MOESM1_ESM.pdf (2.9 mb)
(PDF 2.91 MB)
11295_2014_816_MOESM2_ESM.xls (27 kb)
(XLS 27.0 KB)
11295_2014_816_MOESM3_ESM.xls (14 kb)
(XLS 14.0 KB)
11295_2014_816_MOESM4_ESM.xls (16 kb)
(XLS 16.0 KB)
11295_2014_816_MOESM5_ESM.txt (1.4 mb)
(TXT 1.37 MB)
11295_2014_816_MOESM6_ESM.txt (1.7 mb)
(TXT 1.71 MB)
11295_2014_816_MOESM7_ESM.ods (76 kb)
(ODS 75.7 KB)

References

  1. Aagaard JE, Krutovskii KV, Strauss SH (1998) RAPDs and allozymes exhibit similar levels of diversity and differentiation among populations and races of Douglas-fir. Heredity 81 (1):69–78. 10.1046/j.1365-2540.1998.00355.x CrossRefGoogle Scholar
  2. Achaz G (2008) Testing for neutrality in samples with sequencing errors. Genetics 179 (3):1409–1424. 10.1534/genetics.109.104042 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Ahuja MR, Neale DB (2005) Evolution of genome size in conifers. Silvae genetica 54 (3):126–137Google Scholar
  4. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19 (9):1655–1664. 10.1101/gr.094052.109 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Alexander DH, Novembre J, Lange K (2013) ADMIXTURE 1.23 Software ManualGoogle Scholar
  6. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F st-outlier method. BMC Bioinformatics 9:323. 10.1186/1471-2105-9-323 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Arnold B, Corbett-Detig RB, Hartl D, Bomblies K (2013) RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol Ecol 22 (11):3179–3190. 10.1111/mec.12276 CrossRefPubMedGoogle Scholar
  8. Beaumont MA (2010) Approximate Bayesian computation in evolution and ecology. Ann. Rev. Ecol. Evol. Syst. 41:379–406. 10.1146/annurev-ecolsys-102209-144621 CrossRefGoogle Scholar
  9. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B 263 (1377):1619–1626. 10.1098/rspb.1996.0237 CrossRefGoogle Scholar
  10. Besag J, Clifford P (1991) Sequential Monte Carlo p-values. Biometrika 78 (2):301–304. 10.1093/biomet/78.2.301 CrossRefGoogle Scholar
  11. Burgess D (2011) Multiplex sequence capture for targeted resequencing of candidate gene panels in cancer. Roche Nimblegen, IncGoogle Scholar
  12. Campbell RK (1979) Genecology of Douglas-fir in a watershed in the Oregon Cascades. Ecology 60 (5):1036–1050. 10.2307/1936871 CrossRefGoogle Scholar
  13. Campbell RK, Sugano AI (1979) Genecology of bud-burst phenology in Douglas-fir: response to flushing temperature and chilling. Bot. Gaz. 140 (2):223–231. 10.1086/337079 CrossRefGoogle Scholar
  14. Carlson CS, Thomas DJ, Eberle MA, Swanson JE, Livingston RJ, Rieder MJ, Nickerson DA (2005) Genomic regions exhibiting positive selection identified from dense genotype data. Genome Res 15 (11):1553–1565. 10.1101/gr.4326505 CrossRefPubMedCentralPubMedGoogle Scholar
  15. Csilléry K, François O, Blum MGB (2012) abc: an R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 3 (3):475–479. 10.1111/j.2041-210x.2011.00179.x CrossRefGoogle Scholar
  16. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group (2011) The variant call format and VCFtools. Bioinformatics 27 (15):2156–2158. 10.1093/bioinformatics/btr330 CrossRefPubMedCentralPubMedGoogle Scholar
  17. Danecek P, Nellåker C, McIntyre RE, Buendia-Buendia JE, Bumpstead S, Ponting CP, Flint J, Durbin R, Keane TM, Adams DJ (2012) High levels of RNA-editing site conservation amongst 15 laboratory mouse strains. Genome Biol 13 (4):26. 10.1186/gb-2012-13-4-r26 CrossRefPubMedGoogle Scholar
  18. Dean CA (2007) Genotype and population performances and their interactions for growth of coastal Douglas-fir in western Washington. For. Sci. 53 (4):463–472Google Scholar
  19. Ducić T, Parladé J, Polle A (2008) The influence of the ectomycorrhizal fungus Rhizopogon subareolatus on growth and nutrient element localisation in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in response to manganese stress. Mycorrhiza 18 (5):227–239. 10.1007/s00572-008-0174-5 CrossRefPubMedCentralPubMedGoogle Scholar
  20. Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, St Clair JB, Neale DB (2009a) Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 182 (4):1289–1302. 10.1534/genetics.109.102350 CrossRefPubMedCentralPubMedGoogle Scholar
  21. Eckert AJ, Wegrzyn JL, Pande B, Jermstad KD, Lee JM, Liechty JD, Tearse BR, Krutovsky KV, Neale DB (2009b) Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas fir (Pseudotsuga menziesii var. menziesii). Genetics 183 (1):289–298. 10.1534/genetics.109.103895 CrossRefPubMedCentralPubMedGoogle Scholar
  22. Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155 (3):1405–1413PubMedCentralPubMedGoogle Scholar
  23. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180 (2):977–993. 10.1534/genetics.108.092221 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Frontier S (1976) Étude de la decroissance des valeurs propres dans une analyze en composantes principales: comparison avec le modèle de baton brisé. J Exp Marine Biol 25:67–75. 10.1016/0022-0981(76)90076-9 CrossRefGoogle Scholar
  25. Grivet D, Sebastiani F, Alía R, Bataillon T, Torre S, Zabal-Aguirre M, Vendramin GG, González-Martínez SC (2011) Molecular footprints of local adaptation in two mediterranean conifers. Mol Biol Evol 28 (1):101–116. 10.1093/molbev/msq190 CrossRefPubMedGoogle Scholar
  26. Grover CE, Salmon A, Wendel JF (2012) Targeted sequence capture as a powerful tool for evolutionary analysis. Am J Bot 99 (2):312–319. 10.3732/ajb.1100323 CrossRefPubMedGoogle Scholar
  27. Günther T, Coop G (2013) Robust identification of local adaptation from allele frequencies. Genetics 195 (1):205–220. 10.1534/genetics.113.152462 CrossRefPubMedCentralPubMedGoogle Scholar
  28. Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2012) Climate change may cause severe loss in the economic value of European forest land. Nature Clim Change advance online publication, 10.1038/nclimate1687
  29. Haun WJ, Hyten DL, Xu WW, Gerhardt DJ, Albert TJ, Richmond T, Jeddeloh JA, Jia G, Springer NM, Vance CP, Stupar RM (2011) The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 82. Plant Physiol 155 (2):645–655. 10.1104/pp.110.166736 CrossRefPubMedCentralPubMedGoogle Scholar
  30. He F, Zhang X, Hu J, Turck F, Dong X, Goebel U, Borevitz J, de Meaux J (2012) Genome-wide analysis of cis-regulatory divergence between species in the Arabidopsis genus. Mol Biol Evol 29 (11):3385–3395. 10.1093/molbev/mss146 CrossRefPubMedGoogle Scholar
  31. Helyar SJ, Hemmer-Hansen J, Bekkevold D, Taylor MI, Ogden R, Limborg MT, Cariani A, Maes GE, Diopere E, Carvalho GR, Nielsen EE (2011) Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour 11 Suppl 1:123–136. 10.1111/j.1755-0998.2010.02943.x CrossRefPubMedGoogle Scholar
  32. Henry IM, Nagalakshmi U, Lieberman MC, Ngo KJ, Krasileva KV, Vasquez-Gross H, Akhunova A, Akhunov E, Dubcovsky J, Tai TH, Comai L (2014) Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell. 10.1105/tpc.113.121590 Google Scholar
  33. Hermann RK, Lavender DP (1999) Douglas-fir planted forests. New Forest 17:53–70. 10.1023/A:1006581028080 CrossRefGoogle Scholar
  34. Heuertz M, De Paoli E, Källman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics 174 (4):2095–2105. 10.1534/genetics.106.065102 CrossRefPubMedCentralPubMedGoogle Scholar
  35. Howe GT, Yu J, Knaus B, Cronn R, Kolpak S, Dolan P, Lorenz WW, Dean JFD (2013) A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation. BMC Genomics 14:137. 10.1186/1471-2164-14-137 CrossRefPubMedCentralPubMedGoogle Scholar
  36. Hudson RR (2002) Generating samples under a Wright-Fisher neutral model. Bioinformatics 18:337–338. 10.1093/bioinformatics/18.2.337 CrossRefPubMedGoogle Scholar
  37. IPCC (2007) Intergovernmental Panel on Climate Change - Fourth Assessment ReportGoogle Scholar
  38. Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74 (8):2204–2214. 10.2307/1939574 CrossRefGoogle Scholar
  39. Jaramillo-Correa JP, Verdú M, González-Martínez SC (2010) The contribution of recombination to heterozygosity differs among plant evolutionary lineages and life-forms. BMC Evol Biol 10 (1). 10.1186/1471-2148-10-22
  40. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. 10.1093/bioinformatics/btn129 CrossRefPubMedGoogle Scholar
  41. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. 10.1186/1471-2156-11-94 CrossRefPubMedCentralPubMedGoogle Scholar
  42. Kleinschmit K, Bastien JC (1992) IUFRO’s role in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) tree improvement. Silvae geneticaGoogle Scholar
  43. Kohnle U, Hein S, Sorensen FC, Weiskittel AR (2012) Effects of seed source origin on bark thickness of Douglas-fir (Pseudotsuga menziesii) growing in southwestern Germany. Can. J. For. Res. 42 (2):382–399. 10.1139/x11-191 CrossRefGoogle Scholar
  44. Krutovsky K, St Clair J, Saich R, Hipkins V, Neale D (2009) Estimation of population structure in coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii] using allozyme and microsatellite markers. Tree Genet Genomes 5 (4):641–658. 10.1007/s11295-009-0216-y CrossRefGoogle Scholar
  45. Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas fir. Genetics 171 (4):2029–2041. 10.1534/genetics.105.044420 CrossRefPubMedCentralPubMedGoogle Scholar
  46. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25 (16):2078–2079. 10.1093/bioinformatics/btp352 CrossRefPubMedCentralPubMedGoogle Scholar
  47. Lotterhos KE, Whitlock MC (2014) Evaluation of demographic history and neutral parameterization on the performance of F ST outlier tests. Mol Ecol. 10.1111/mec.12725 PubMedCentralGoogle Scholar
  48. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17 (1):10–12. 10.14806/ej.17.1.200 Google Scholar
  49. Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D’Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer K FX, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76 (3):494–505. 10.1111/tpj.12294 CrossRefPubMedCentralPubMedGoogle Scholar
  50. Mosca E, Eckert AJ, Liechty JD, Wegrzyn JL, La Porta N, Vendramin GG, Neale DB (2012) Contrasting patterns of nucleotide diversity for four conifers of Alpine European forests. Evol Appl 5 (1):762–775. 10.1111/j.1752-4571.2012.00256.x CrossRefPubMedCentralPubMedGoogle Scholar
  51. Müller T, Ensminger I, Schmid KJ (2012) A catalogue of putative unique transcripts from Douglas-fir (Pseudotsuga menziesii) based on 454 transcriptome sequencing of genetically diverse, drought stressed seedlings. BMC Genomics 13 (1):673. 10.1186/1471-2164-13-673 CrossRefPubMedCentralPubMedGoogle Scholar
  52. Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9 (7):325–330. 10.1016/j.tplants.2004.05.006 CrossRefPubMedGoogle Scholar
  53. Neale DB, Ingvarsson PK (2008) Population, quantitative and comparative genomics of adaptation in forest trees. Curr Opin Plant Biol 11 (2):149–155. 10.1016/j.pbi.2007.12.004 CrossRefPubMedGoogle Scholar
  54. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12 (2):111–122. 10.1038/nrg2931 CrossRefPubMedGoogle Scholar
  55. Neale DB, Langley CH, Salzberg SL, Wegrzyn JL (2013) Open access to tree genomes: the path to a better forest. Genome Biol 14 (6):120. 10.1186/gb-2013-14-6-120 PubMedCentralPubMedGoogle Scholar
  56. Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, Martínez-García PJ, Vasquez-Gross HA, Lin BY, Zieve JJ, Dougherty WM, Fuentes-Soriano S, Wu LS, Gilbert D, Marçais G, Roberts M, Holt C, Yandell M, Davis JM, Smith KE, Dean JF, Lorenz WW, Whetten RW, Sederoff R, Wheeler N, McGuire PE, Main D, Loopstra CA, Mockaitis K, Dejong PJ, Yorke JA, Salzberg SL, Langley CH (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15 (3):R59. 10.1186/gb-2014-15-3-r59 CrossRefPubMedCentralPubMedGoogle Scholar
  57. NimbleGen (2011) NimbleGen SeqCap EZ Library SR User’s Guide, version 3.0. Roche NimbleGenGoogle Scholar
  58. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield D G, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hällman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Käller M, Luthman J, Lysholm F, Niittylä T, Olson A, Rilakovic N, Ritland C, Rosselló JA, Sena J, Svensson T, Talavera-López C, Theißen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Garcia Gil R, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497 (7451):579–584. 10.1038/nature12211 CrossRefPubMedGoogle Scholar
  59. Palmé AE, Wright M, Savolainen O (2008) Patterns of divergence among conifer ESTs and polymorphism in Pinus sylvestris identify putative selective sweeps. Mol Biol Evol 25 (12):2567–2577. 10.1093/molbev/msn194 CrossRefPubMedGoogle Scholar
  60. Palmé AE, Pyhäjärvi T, Wachowiak W, Savolainen O (2009) Selection on nuclear genes in a Pinus phylogeny. Mol Biol Evol 26 (4):893–905. 10.1093/molbev/msp010 CrossRefPubMedGoogle Scholar
  61. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20 (2):289–290. 10.1093/bioinformatics/btg412 CrossRefPubMedGoogle Scholar
  62. Pare G (2010) Genome-wide association studies—data generation, storage, interpretation, and bioinformatics. J Cardiovasc Transl Res 3 (3):183–188. 10.1007/s12265-010-9181-y CrossRefPubMedGoogle Scholar
  63. Pavlidis P, Laurent S, Stephan W (2010) msABC: a modification of Hudson’s ms to facilitate multi-locus ABC analysis. Mol Ecol Resour 10 (4):723–727. 10.1111/j.1755-0998.2010.02832.x CrossRefPubMedGoogle Scholar
  64. Peters D, Luo X, Qiu K, Liang P (2012) Speeding up large-scale next generation sequencing data analysis with pBWA. J Biocomput 1 (1)Google Scholar
  65. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D, Maller J, Sklar P, de Bakker P, Daly M, Sham P (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 81. 10.1086/519795
  66. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26 (6):841–842. 10.1093/bioinformatics/btq033 CrossRefPubMedCentralPubMedGoogle Scholar
  67. Rehfeldt G (1989) Ecological adaptations in Douglas-fir (Pseudotsuga menziesii var. glauca): a synthesis. Forest Ecol Manag 28 (3):203–215. 10.1016/0378-1127(89)90004-2 CrossRefGoogle Scholar
  68. Tajima F (1989) Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585– 595PubMedCentralPubMedGoogle Scholar
  69. Viard F, El-Kassaby YA, Ritland K (2001) Diversity and genetic structure in populations of Pseudotsuga menziesii (Pinaceae) at chloroplast microsatellite loci. Genome 44 (3):336–344. 10.1139/g01-010 CrossRefPubMedGoogle Scholar
  70. Wei XX, Beaulieu J, Khasa D, Vargas-Hernández J, López-Upton J, Jaquish B, Bousquet J (2011) Range-wide chloroplast and mitochondrial DNA imprints reveal multiple lineages and complex biogeographic history for Douglas-fir. Tree Genet Genomes 7 (5):1025–1040. 10.1007/s11295-011-0392-4 CrossRefGoogle Scholar
  71. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38 (1358–1370). 10.2307/2408641
  72. Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet 76 (5):887–893. 10.1086/429864 CrossRefPubMedCentralPubMedGoogle Scholar
  73. Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn J L, de Jong PJ, Neale DB, Salzberg SL, Yorke JA, Langley CH (2014) Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics 196 (3):875–890. 10.1534/genetics.113.159715 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thomas Müller
    • 1
  • Fabian Freund
    • 1
  • Henning Wildhagen
    • 2
  • Karl J. Schmid
    • 1
  1. 1.Department of Crop Biodiversity And Breeding InformaticsUniversity of HohenheimStuttgartGermany
  2. 2.Forest Research Institute (FVA) Baden-WürttembergFreiburgGermany

Personalised recommendations