Advertisement

Tree Genetics & Genomes

, Volume 10, Issue 5, pp 1419–1433 | Cite as

Genetic structure in Pinus cembra from the Carpathian Mountains inferred from nuclear and chloroplast microsatellites confirms post-glacial range contraction and identifies introduced individuals

  • Bertalan Lendvay
  • Mária Höhn
  • Sabine Brodbeck
  • Marcel Mîndrescu
  • Felix Gugerli
Original Paper

Abstract

Genetic differentiation of scattered populations at neutral loci is characterized by genetic drift counteracted by the remaining gene flow. Populations of Pinus cembra in the Carpathian Mountains are isolated and restricted to island-like stands at high-elevation mountain ranges. In contrast, paleobotanical data suggest an extended early Holocene distribution of P. cembra in the Carpathians and its surrounding areas, which has contracted to the currently disjunct occurrences. We analyzed the genetic variation of 11 Carpathian populations of P. cembra at chloroplast and, in part newly developed, nuclear microsatellites. Both marker types revealed low levels of genetic differentiation and a lack of isolation by distance, reflecting the post-glacial retraction of the species to its current distribution. Stronger effects of genetic drift were implied by the higher genetic differentiation found for haploid chloroplast than for diploid nuclear markers. Moreover, we found no association between the values of population genetic differentiation for the two marker types. Several populations indicated recent genetic bottlenecks and inbreeding as a consequence of decline in population sizes. Moreover, we found individuals in two populations from the Rodnei Mountains that strikingly differed in assignment probabilities from the remaining specimens, suggesting that they had been introduced from a provenance outside the studied populations. Comparison with Eastern Alpine P. cembra and individuals of the closely related Pinus sibirica suggests that these individuals presumably are P. sibirica. Our study highlights the importance of the maintenance of sufficiently large local population sizes for conservation due to low connectivity between local occurrences.

Keywords

Disjunct distribution Gene flow Genetic drift Molecular markers Population bottleneck 

Notes

Acknowledgments

We acknowledge the CRUS-Sciex grant (12.071) that allowed the stay of BL at WSL.

Data archiving statement

Sequence data of nuclear microsatellite loci are retrievable from NCBI GenBank; cp/nSSR data are uploaded on the TreeGenes database.

Supplementary material

11295_2014_770_MOESM1_ESM.docx (593 kb)
ESM 1 (DOCX 592 kb)

References

  1. Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell, OxfordGoogle Scholar
  2. Alsos IG, Alm T, Normand S, Brochmann C (2009) Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modeling. Glob Ecol Biogeogr 18:223–239CrossRefGoogle Scholar
  3. Belokon MM, Belokon YS, Politov DV, Altukhov YP (2005) Allozyme polymorphism of Swiss stone pine Pinus cembra L. in mountain populations of the Alps and the Eastern Carpathians. Russ J Genet 41:1268–1280CrossRefGoogle Scholar
  4. Birky CW Jr, Fuerst P, Maruyama T (1989) Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121:613–627PubMedGoogle Scholar
  5. Blada I (1997) Stone pine (Pinus cembra L.) provenance experiment in Romania. Silvae Genet 46:197–200Google Scholar
  6. Blada I (2008) Pinus cembra distribution in the Romanian Carpathians. Ann For Res 51:115–132Google Scholar
  7. Casalegno S, Amatulli G, Camia A, Nelson A, Pekkarinen A (2010) Vulnerability of Pinus cembra L. in the Alps and the Carpathian mountains under present and future climates. For Ecol Manag 259:750–761CrossRefGoogle Scholar
  8. Corander J, Tang J (2007) Bayesian analysis of population structure based on linked molecular information. Math Biosci 205:19–31PubMedCrossRefGoogle Scholar
  9. Corander J, Waldmann P, Sillanpää MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374PubMedPubMedCentralGoogle Scholar
  10. Critchfield WB (1986) Hybridization and classification of the white pines (Pinus section Strobus). Taxon 35:647–656CrossRefGoogle Scholar
  11. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581PubMedCrossRefGoogle Scholar
  12. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  13. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242CrossRefGoogle Scholar
  14. Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72:250–259CrossRefGoogle Scholar
  15. Fekete L (1887) Abauj-Torna-, Szepes- és Gömör vármegyék erdő- tenyésztési viszonyai. Erdészeti lapok 26:525–549 (Silvicultural characteristics of Abauj-Torna, Szepes and Gömör counties)Google Scholar
  16. Feurdean A, Tantau I, Farcas S (2011) Holocene variability in the range distribution and abundance of Pinus, Picea abies, and Quercus in Romania; implications for their current status. Quat Sci Rev 30:3060–3075CrossRefGoogle Scholar
  17. Goncharenko GG, Padutov VE, Silin AE (1992) Population structure, gene diversity, and differentiation in natural populations of Cedar pines (Pinus subsect. Cembrae, Pinaceae) in the USSR. Plant Syst Evol 182:121–134CrossRefGoogle Scholar
  18. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  19. Goudet J (2002) Fstat 2.9.3.2. URL: http://www2.unil.ch/popgen/softwares/fstat.htm
  20. Gugerli F, Senn J, Anzidei M, Madaghiele A, Büchler U, Sperisen C, Vendramin GG (2001) Chloroplast microsatellites and mitochondrial nad1 intron 2 sequences indicate congruent phylogenetic relationships among Swiss stone pine (Pinus cembra), Siberian stone pine (Pinus sibirica), and Siberian dwarf pine (Pinus pumila). Mol Ecol 10:1489–1497PubMedCrossRefGoogle Scholar
  21. Höhn M, Ábrán P, Vendramin GG (2005) Genetic analysis of Swiss stone pine populations (Pinus cembra L. subsp. cembra) from the Carpathians using chloroplast microsatellites. Acta Silv Lign Hung 1:39–47Google Scholar
  22. Höhn M, Gugerli F, Ábrán P, Bisztray G, Buonamici A, Cseke K, Hufnagel L, Quintela-Sabarís C, Sebastiani F, Vendramin GG (2009) Variation in the chloroplast DNA of Swiss stone pine (Pinus cembra L.) reflects contrasting post-glacial history of populations from the Carpathians and the Alps. J Biogeogr 36:1798–1806CrossRefGoogle Scholar
  23. Höhn M, Hufnagel L, Cseke K, Vendramin GG (2010) Current range characteristics of Swiss stone pine (Pinus cembra L.) along the Carpathians revealed by chloroplast SSR markers. Acta Biol Hung 61(Suppl):61–67PubMedCrossRefGoogle Scholar
  24. Hu X-S, Ennos RA (1997) On estimation of the ratio of pollen to seed flow among plant populations. Heredity 79:541–552CrossRefGoogle Scholar
  25. Hu X-S, Ennos RA (1999) Impacts of seed and pollen flow on population genetic structure for plant genomes with three contrasting modes of inheritance. Genetics 152:441–450PubMedPubMedCentralGoogle Scholar
  26. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806PubMedCrossRefGoogle Scholar
  27. Jankovská V (1984) Late glacial finds of Pinus cembra L. in the Lubovnianská kotlina Basin. Folia Geobot Phytotaxon 19:323–325Google Scholar
  28. Jankovská V, Pokorný P (2008) Forest vegetation of the last full-glacial period in the Western Carpathians (Slovakia and Czech Republic). Preslia 80:307–324Google Scholar
  29. Karhu A, Vogl C, Moran GF, Bell JC, Savolainen O (2006) Analysis of microsatellite variation in Pinus radiata reveals effects of genetic drift but no recent bottlenecks. J Evol Biol 19:167–175PubMedCrossRefGoogle Scholar
  30. Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of the genetic correlation with distance. Genetics 49:561–576PubMedPubMedCentralGoogle Scholar
  31. Krutovsky KV, Politov DV, Altukhov YP (1992) Genetic differentiation and phylogeny of stone pine species based on isozyme loci. International Workshop on Subalpine Stone Pines and Their Environment: The Status of Our Knowledge, St. Moritz, Switzerland, September 5-11, 1992, Proceedings 19–30Google Scholar
  32. Kuneš P, Pelánková B, Chytrý M, Jankovská V, Pokorný P, Petr L (2008) Interpretation of the last-glacial vegetation of eastern-central Europe using modern analogues from southern Siberia. J Biogeogr 35:2223–2236CrossRefGoogle Scholar
  33. Latta RG, Mitton JB (1997) A comparison of population differentiation across four classes of gene marker in limber pine (Pinus flexilis James). Genetics 146:1153–1163PubMedPubMedCentralGoogle Scholar
  34. Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449PubMedCrossRefGoogle Scholar
  35. Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189CrossRefGoogle Scholar
  36. Magyari E, Jakab G, Bálint M, Kern Z, Buczkó K, Braun M (2012) Rapid vegetation response to Lateglacial and early Holocene climatic fluctuation in the South Carpathian Mountains (Romania). Quat Sci Rev 35:116–130CrossRefGoogle Scholar
  37. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  38. Mattes H (1982) Die Lebensgemeinschaft von Tannenhäher und Arve, 2nd edn. Eidgenössische Forschungsanstalt für das forstliche Versuchswesen, BirmensdorfGoogle Scholar
  39. McKay JK, Christian CE, Harrison S, Rice KJ (2005) “How local is local?”—A review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440CrossRefGoogle Scholar
  40. Meusel H, Jäger E, Weinert E (1965) Vergleichende Chorologie der Zentraleuropäischen Flora. Gustav Fischer, JenaGoogle Scholar
  41. Myers ER, Chung MY, Chung MG (2007) Genetic diversity and spatial genetic structure of Pinus strobus (Pinaceae) across an island landscape inferred from allozyme and cpDNA markers. Plant Syst Evol 264:15–30CrossRefGoogle Scholar
  42. Paryski W (1971) Sadzenie i przesadzanie limby (The planting and transplanting of Pinus cembra). In: Białobok S (ed) Limba Pinus cembra L. (The stone pine Pinus cembra L.) Nasze drzewa leśne 2:50–56 (in Polish with an English summary) cit. in: Zwijacz-Kozica T, Żywiec M (2007) Fifty-year changes in a strictly protected stone pine population in the Tatra National Park. Nat Conserv 64:73–82Google Scholar
  43. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539PubMedCrossRefPubMedCentralGoogle Scholar
  44. Petit RJ, Kremer A, Wagner DB (1993) Finite island model for organelle and nuclear genes in plants. Heredity 71:630–641CrossRefGoogle Scholar
  45. Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701PubMedCrossRefGoogle Scholar
  46. Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  47. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  48. Provan J, Soranzo N, Wilson NJ, Goldstein DB, Powell W (1999) A low mutation rate for chloroplast microsatellites. Genetics 153:943–947PubMedPubMedCentralGoogle Scholar
  49. Provan J, Beatty GE, Hunter AM, McDonald RA, McLaughlin E, Preston SJ, Wilson S (2008) Restricted gene flow in fragmented populations of a wind-pollinated tree. Conserv Genet 9:1521–1532CrossRefGoogle Scholar
  50. Puşcaş M, Choler P, Tribsch A, Gielly L, Rioux D, Gaudeul M, Taberlet P (2008) Post-glacial history of the dominant alpine sedge Carex curvula in the European Alpine System inferred from nuclear and chloroplast markers. Mol Ecol 17:2417–2429PubMedCrossRefGoogle Scholar
  51. Ribeiro MM, Mariette S, Vendramin GG, Szmidt AE, Plomion C, Kremer A (2002) Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple-sequence repeat and amplified fragment length polymorphism data. Mol Ecol 11:869–877PubMedCrossRefGoogle Scholar
  52. Ronikier M (2011) Biogeography of high-mountain plants in the Carpathians: an emerging phylogeographical perspective. Taxon 60:373–389Google Scholar
  53. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedPubMedCentralGoogle Scholar
  54. Rowland V (1882) A czirbolya-fenyő (Pinus cembra) elöjövétele- és tenyésztéséről a központi Kárpátokban. Erdészeti lapok 21:422–427 (On the discovery of Swiss stone pine (Pinus cembra) and its propagation in the Central Carpathians)Google Scholar
  55. Rybníčková E, Rybníček K (2006) Pollen and macroscopic analyses of sediments from two lakes in the High Tatra mountains, Slovakia. Veget Hist Archeobot 15:345–356CrossRefGoogle Scholar
  56. Salzer K, Sebastiani F, Gugerli F, Bounamici A, Vendramin GG (2009) Isolation and characterization of polymorphic nuclear microsatellite loci in Pinus cembra L. Mol Ecol Resour 9:858–861PubMedCrossRefGoogle Scholar
  57. Schoebel CN, Brodbeck S, Buehler D, Cornejo C, Gajurel J, Hartikainen H, Keller D, Leys M, Říčanová Š, Segelbacher G, Werth S, Csencsics D (2013) Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing. J Evol Biol 26:600–611PubMedCrossRefGoogle Scholar
  58. Sherwin WB, Jabot F, Rush R, Rosetto M (2006) Measurement of biological information with applications from genes to landscapes. Mol Ecol 15:2857–2869PubMedCrossRefGoogle Scholar
  59. Szmidt AE (1982) Genetic variation in isolated populations of stone pine (Pinus cembra). Silva Fenn 16:196–200Google Scholar
  60. Thiel-Egenter C, Holderegger R, Brodbeck S, Intrabiodiv Consortium, Gugerli F (2009) Concordant genetic breaks, identified by combining clustering and tessellation methods, in two co-distributed alpine plant species. Mol Ecol 18:4495–4507PubMedCrossRefGoogle Scholar
  61. Tomback DF, Holtmeier F-K, Mattes H, Carsey KS, Powell ML (1993) Tree clusters and growth form distribution in Pinus cembra, a bird-dispersed pine. Arct Alp Res 25:374–381CrossRefGoogle Scholar
  62. Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5:595–598PubMedCrossRefGoogle Scholar
  63. Voronoï MG (1908) Nouvelles application des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire Recherche sur le paralléloedres primitifs. J Reine Angew Math 134:198–207Google Scholar
  64. Wachowiak W, Boratyńska K, Cavers S (2013) Geographical patterns of nucleotide diversity and population differentiation in three closely related European pine species in the Pinus mugo complex. Bot J Linn Soc 172:225–238CrossRefGoogle Scholar
  65. Willis KJ, Van Andel TH (2004) Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quat Sci Rev 23:2369–2387CrossRefGoogle Scholar
  66. Willis KJ, Rudner E, Sümegi P (2000) The full-glacial forests of central and southeastern Europe. Quat Res 53:203–213CrossRefGoogle Scholar
  67. Wohlfarth B, Hannon G, Feurdean A, Ghergari L, Onac BP, Possnert G (2001) Reconstruction of climatic and environmental changes in NW Romania during the early part of the last deglaciation (~15,000–13,600 cal yr BP). Quat Sci Rev 20:1897–1914CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bertalan Lendvay
    • 1
    • 2
  • Mária Höhn
    • 2
  • Sabine Brodbeck
    • 1
  • Marcel Mîndrescu
    • 3
  • Felix Gugerli
    • 1
  1. 1.WSL Swiss Federal Research InstituteBirmensdorfSwitzerland
  2. 2.Faculty of Horticultural ScienceCorvinus University of BudapestBudapestHungary
  3. 3.Department of GeographyUniversity of SuceavaSuceavaRomania

Personalised recommendations