Tree Genetics & Genomes

, Volume 10, Issue 5, pp 1223–1242 | Cite as

QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny

  • Igor Pacheco
  • Daniele Bassi
  • Iban Eduardo
  • Angelo Ciacciulli
  • Raul Pirona
  • Laura Rossini
  • Alberto Vecchietti
Original Paper


Brown rot (BR) caused by Monilinia spp. leads to significant post-harvest losses in stone fruit production, especially peach. Previous genetic analyses in peach progenies suggested that BR resistance segregates as a quantitative trait. In order to uncover genomic regions associated with this trait and identify molecular markers for assisted selection (MAS) in peach, an F1 progeny from the cross “Contender” (C, resistant) × “Elegant Lady” (EL, susceptible) was chosen for quantitative trait loci (QTL) analysis. Over two phenotyping seasons, skin (SK) and flesh (FL) artificial infections were performed on fruits using a Monilinia fructigena isolate. For each treatment, infection frequency (if) and average rot diameter (rd) were scored. Significant seasonal and intertrait correlations were found. Maturity date (MD) was significantly correlated with disease impact. Sixty-three simple sequence repeats (SSRs) plus 26 single-nucleotide polymorphism (SNP) markers were used to genotype the C × EL population and to construct a linkage map. C × EL map included the eight Prunus linkage groups (LG), spanning 572.92 cM, with an average interval distance of 6.9 cM, covering 78.73 % of the peach genome (V1.0). Multiple QTL mapping analysis including MD trait as covariate uncovered three genomic regions associated with BR resistance in the two phenotyping seasons: one containing QTLs for SK resistance traits near M1a (LG C × EL-2, R 2 = 13.1–31.5 %) and EPPISF032 (LG C × EL-4, R 2 = 11–14 %) and the others containing QTLs for FL resistance, near markers SNP_IGA_320761 and SNP_IGA_321601 (LG3, R 2 = 3.0–11.0 %). These results suggest that in the C × EL F1 progeny, skin resistance to fungal penetration and flesh resistance to rot spread are distinguishable mechanisms constituting BR resistance trait, associated with different genomic regions. Discovered QTLs and their associated markers could assist selection of new cultivars with enhanced resistance to Monilinia spp. in fruit.


Peach fruit Disease resistance Monilinia spp Brown rot Marker-assisted selection Linkage map Genomics 



This work was supported by an Italian grant to DB funded by private and public agencies “MAS.PES: apricot and peach breeding by molecular-assisted selection.” Thanks to the Executive Committee of Fruit Breedomics European Project (FP7-265582) and Fondazione Edmund Mach, who allowed the use and provided genotypic data of 26 SNPs included in this study. RP was supported by MIUR FIRB grant RBIP06CTBR. The authors wish to thank M Pesenti, S Femia, A Masini, M Lasala, A Arioli, L Nazzari, and E Quattrini for technical assistance in field and lab operations, as well as Dr. S Biffani for the advice on statistical analyses and Prof. F Faoro for the advice on plant pathology issues.

Author contributions

IP constructed the genetic map, performed and coordinated phenotyping, conducted statistical and QTL analysis and drafted and corrected the manuscript. DB assessed the potential of the plant material, developed the population, helped to draft the manuscript, managed and coordinated the study. IE and RP participated in marker analysis and helped to draft the manuscript. AC helped in phenotyping, QTL analyses, and helped in the revision of the manuscript. LR managed and coordinated the study and helped to draft the manuscript. AV managed and coordinated the study, participated in its design. All authors read and approved the final manuscript.

Data archiving statement

C × EL linkage map and QTL positions will be submitted on Genome Database for Rosaceae (

Supplementary material

11295_2014_756_MOESM1_ESM.pdf (470 kb)
ESM 1 (PDF 469 kb)
11295_2014_756_MOESM2_ESM.pdf (102 kb)
ESM 2 (PDF 101 kb)
11295_2014_756_MOESM3_ESM.pdf (74 kb)
ESM 3 (PDF 73 kb)
11295_2014_756_MOESM4_ESM.pdf (71 kb)
ESM 4 (PDF 71 kb)


  1. Adaskaveg JE, Feliciano AJ, Ogawa JM (1991) Evaluation of the cuticle as a barrier to penetration by Monilinia fructicola. Phytopathology 81(10):1150Google Scholar
  2. Adaskaveg JE, Forster H, Thompson DF (2000) Identification and etiology of visible quiescent infections of Monilinia fructicola and Botrytis cinerea in sweet cherry fruit. Plant Dis 84(3):328–333Google Scholar
  3. Adaskaveg JE, Schnabel G, Förster H (2008) Diseases of peach caused by fungi and fungal-like organisms: biology, epidemiology and management. In: Layne DR, Bassi D (eds) The Peach: Botany, Production and Uses. CABI, Wallingford, UKGoogle Scholar
  4. Ahmad R, Parfitt DE, Fass J, Ogundiwin E, Dhingra A, Gradziel TM, Lin D, Joshi NA, Martinez-Garcia PJ, Crisosto CH (2011) Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. BMC Genomics 12:569PubMedPubMedCentralGoogle Scholar
  5. Amiri A, Brannen PM, Schnabel G (2009) Resistance to respiration inhibitor fungicides in Monilinia fructicola field isolates from South Carolina and Georgia. Phytopathology 99(6):S3–S3Google Scholar
  6. Amiri A, Brannen PM, Schnabel G (2010) Reduced sensitivity in monilinia fructicola field isolates from south carolina and georgia to respiration inhibitor fungicides. Plant Dis 94(6):737–743. doi: 10.1094/pdis-94-6-0737 Google Scholar
  7. Aranzana MJ, Garcia-Mas J, Carbo J, Arus P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121(1):87–92Google Scholar
  8. Aranzana M, Abbassi E-K, Howad W, Arus P (2010) Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genet 11(1):69. doi: 10.1186/1471-2156-11-69 PubMedPubMedCentralGoogle Scholar
  9. Aranzana MJ, Illa E, Howad W, Arus P (2012) A first insight into peach Prunus persica (L.) Batsch SNP variability. Tree Genet Genome 8(6):1359–1369. doi: 10.1007/s11295-012-0523-6 Google Scholar
  10. Arus P, Verde I, Sosinski B, Zhebentyayeva T, Abbott AG (2012) The peach genome. Tree Genet Genome 8(3):531–547. doi: 10.1007/s11295-012-0493-8 Google Scholar
  11. Bassi D, Rizzo M (2003) Breeding peaches for fruit quality and brown-rot [(Monilia laxa Aderh. et Ruhl. (Honey)] resistance in peach [Prunus persica (L.) Batsch - Emilia-Romagna]. Italus Hortus 10(5):60–65Google Scholar
  12. Bassi D, Rizzo M, Cantoni L (1998) Assaying brown rot [(Monilinia laxa aderh. et ruhl. (honey)] susceptibility in peach cultivars and progeny. Acta Horticult (ISHS) 465:715–722Google Scholar
  13. Biggs AR, Northover J (1988) Early and late-season susceptibility of peach fruits to monilinia fructicola. Plant Dis 72(12):1070–1074Google Scholar
  14. Blenda AV, Verde I, Georgi LL, Reighard GL, Forrest SD, Munoz-Torres M, Baird WV, Abbott AG (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Genome 3(4):341–350. doi: 10.1007/s11295-006-0074-9 Google Scholar
  15. Borve J, Sekse L, Stensvand A (2000) Cuticular fractures promote postharvest fruit rot in sweet cherries. Plant Dis 84(11):1180–1184Google Scholar
  16. Bostock RM, Wilcox SM, Wang G, Adaskaveg JE (1999) Suppression of Monilinia fructicola cutinase production by peach fruit surface phenolic acids. Physiol Mol Plant Pathol 54(1–2):37–50Google Scholar
  17. Cantin CM, Crisosto CH, Ogundiwin EA, Gradziel T, Torrents J, Moreno MA, Gogorcena Y (2010) Chilling injury susceptibility in an intra-specific peach Prunus persica (L.) Batsch progeny. Postharvest Biol Technol 58(2):79–87. doi: 10.1016/j.postharvbio.2010.06.002 Google Scholar
  18. Cantini C, Iezzoni AF, Lamboy WF, Boritzki M, Struss D (2001) DNA fingerprinting of tetraploid cherry germplasm using simple sequence repeats. J Am Soc Hortic Sci 126(2):205–209Google Scholar
  19. Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach Prunus persica (L) Batsch : isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99(1–2):65–72Google Scholar
  20. Clarke JB, Tobutt KR (2003) Development and characterization of polymorphic microsatellites from Prunus avium‘Napoleon’. Mol Ecol Notes 3(4):578–580. doi: 10.1046/j.1471-8286.2003.00517.x Google Scholar
  21. Clarke JB, Sargent DJ, Bošković RI, Belaj A, Tobutt KR (2008) A cherry map from the inter-specific cross Prunus avium ‘Napoleon’× P. nipponica based on microsatellite, gene-specific and isoenzyme markers. Tree Genet Genome 5(1):41–51. doi: 10.1007/s11295-008-0166-9 Google Scholar
  22. Daane KM, Johnson RS, Michailides TJ, Crisosto CH, Dlott JW, Ramirez HT, Yokota GY, Morgan DP (1995) Excess nitrogen raises nectarine susceptibility to disease and insects. Calif Agric 49(4):13–18. doi: 10.3733/ca.v049n04p13 Google Scholar
  23. De Koeyer DL, Tinker NA, Wight CP, Deyl J, Burrows VD, O’Donoughue LS, Lybaert A, Molnar SJ, Armstrong KC, Fedak G, Wesenberg DM, Rossnagel BG, McElroy AR (2004) A molecular linkage map with associated QTLs from a hulless x covered spring oat population. Theor Appl Genet 108(7):1285–1298. doi: 10.1007/s00122-003-1556-x PubMedGoogle Scholar
  24. Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arus P, Laigret F (2002) Development of microsatellite markers in peach Prunus persica (L.) Batsch and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105(1):127–138. doi: 10.1007/s00122-002-0867-7 PubMedGoogle Scholar
  25. Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arus P, Esmenjaud D (2004a) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid - location of root-knot nematode resistance genes. Theor Appl Genet 109(4):827–838. doi: 10.1007/s00122-004-1694-9 PubMedGoogle Scholar
  26. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004b) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101(26):9891–9896. doi: 10.1073/pnas.0307937101 PubMedPubMedCentralGoogle Scholar
  27. Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, Moing A (2007) Development of a second-generation genetic linkage map for peach Prunus persica (L.) Batsch and characterization of morphological traits affecting flower and fruit. Tree Genet Genome 3(1):1–13. doi: 10.1007/s11295-006-0053-1 Google Scholar
  28. Downey SL, Iezzoni AF (2000) Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach, and sour cherry. J Am Soc Hortic Sci 125(1):76–80Google Scholar
  29. Eduardo I, Chietera G, Bassi D, Rossini L, Vecchietti A (2010a) Identification of key odor volatile compounds in the essential oil of nine peach accessions. J Sci Food Agric 90(7):1146–1154. doi: 10.1002/jsfa.3932 PubMedGoogle Scholar
  30. Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2010b) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genome 7(2):323–335. doi: 10.1007/s11295-010-0334-6 Google Scholar
  31. Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C (2012) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet Genome. doi: 10.1007/s11295-012-0546-z Google Scholar
  32. El-kereamy A, Jayasankar S, Taheri A, Errampalli D, Paliyath G (2009) Expression analysis of a plum pathogenesis related 10 (PR10) protein during brown rot infection. Plant Cell Rep 28(1):95–102. doi: 10.1007/s00299-008-0612-z PubMedGoogle Scholar
  33. El-Kereamy A, El-Sharkawy I, Ramamoorthy R, Taheri A, Errampalli D, Kumar P, Jayasankar S (2011) Prunus domestica pathogenesis-related protein-5 activates the defense response pathway and enhances the resistance to fungal infection. Plos One 6 (3). doi:e1797310.1371/journal.pone.0017973Google Scholar
  34. EPPO/CABI (1997) Data sheets on quarantine organisms No. 153, Monilinia fructicola. In: Smith IMMD, Scott PR, Holderness M (eds) Quarantine pests for Europe, 2nd edn. CABI International, Wallingford, UKGoogle Scholar
  35. Feliciano A, Feliciano AJ, Ogawa JM (1987) Monilinia fructicola resistance in the peach cultivar ‘Bolinha’. Phytopathology 77(6):776–780. doi: 10.1094/Phyto-77-776 Google Scholar
  36. Forcada CFI, Marti AFI, Company RSI (2012) Mapping quantitative trait loci for kernel composition in almond. BMC Genet 13:9. doi: 10.1186/1471-2156-13-47 Google Scholar
  37. Foulkes AS (2009) Applied statistical genetics with r: for population-based association studies. Use R! (c) Springer Science+Business MEdia, New York. doi: 10.1007/978-0-387-89554-3_1
  38. Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach x Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12(1):33–50Google Scholar
  39. Gasic K, Han YP, Kertbundit S, Shulaev V, Iezzoni AF, Stover EW, Bell RL, Wisniewski ME, Korban SS (2009) Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol Breed 23(3):397–411. doi: 10.1007/s11032-008-9243-x Google Scholar
  40. Georgi LL, Wang Y, Yvergniaux D, Ormsbee T, Inigo M, Reighard G, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach Prunus persica (L.) Batsch. Theor Appl Genet 105(8):1151–1158. doi: 10.1007/s00122-002-0967-4 PubMedGoogle Scholar
  41. Gibert C, Lescourret F, Genard M, Vercambre G, Pastor AP (2005) Modelling the effect of fruit growth on surface conductance to water vapour diffusion. Ann Bot 95(4):673–683. doi: 10.1093/aob/mci067 PubMedGoogle Scholar
  42. Gibert C, Chadoeuf J, Nicot P, Vercambre G, Genard M, Lescourret F (2009) Modelling the effect of cuticular crack surface area and inoculum density on the probability of nectarine fruit infection by Monilinia laxa. Plant Pathol 58(6):1021–1031. doi: 10.1111/j.1365-3059.2009.02121.x Google Scholar
  43. Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749PubMedGoogle Scholar
  44. Govrin EM, Rachmilevitch S, Tiwari BS, Soloman M, Levine A (2006) An elicitor from Botrytis cinerea induces the hypersensitive response in Arabidopsis thaliana and other plants and promotes the gray mold disease. Phytopathology 96(3):299–307. doi: 10.1094/phyto-96-0299 PubMedGoogle Scholar
  45. Gradziel TM, Thorpe MA, Bostock RM, Wilcox S (1998) Breeding for brown rot (Monilinia fructicola) resistance in clingstone peach with emphasis on the role of fruit phenolics. Acta Horticult (ISHS) 465:161–170Google Scholar
  46. Gradziel TM, Bostock RM, Adaskaveg JE (2003) Resistance to brown rot disease in peach is determined by multiple structural and biochemical components. Acta Horticult 622:347–352Google Scholar
  47. Hagen LS, Chaib J, Fady B, Decroocq V, Bouchet JP, Lambert P, Audergon JM (2004) Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Mol Ecol Notes 4(4):742–745Google Scholar
  48. Hayden MJ, Nguyen TM, Waterman A, Chalmers KJ (2008a) Multiplex-Ready PCR: a new method for multiplexed SSR and SNP genotyping. BMC Genomics 9(1):80. doi: 10.1186/1471-2164-9-80 PubMedPubMedCentralGoogle Scholar
  49. Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ (2008b) Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol Breed 21(3):271–281. doi: 10.1007/s11032-007-9127-5 Google Scholar
  50. Hong CX, Holtz BA, Morgan DP, Michailides TJ (1997) Significance of thinned fruit as a source of the secondary inoculum of Monilinia fructicola in California nectarine orchards. Plant Dis 81(5):519–524Google Scholar
  51. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arus P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171(3):1305–1309. doi: 10.1534/genetics.105.043661 PubMedPubMedCentralGoogle Scholar
  52. Hughes KJD, Fulton CE, McReynolds D, Lane CR (2000) Development of new PCR primers for identification of Monilinia species. EPPO conference on diagnostic techniques for plant pests, Waddington, Netherlands, 1-4 February 2000 30:507-511Google Scholar
  53. Illa E, Lambert P, Quilot B, Audergon JM, Dirlewanger E, Howad W, Dondini L, Tartarini S, Lain O, Testolin R, Bassi D, Arus P (2009) Linkage map saturation, construction, and comparison in four populations of Prunus. J Horticult Sci Biotechnol:168-175Google Scholar
  54. Illa E, Sargent DJ, Girona EL, Bushakra J, Cestaro A, Crowhurst R, Pindo M, Cabrera A, van der Knaap E, Iezzoni A, Gardiner S, Velasco R, Arus P, Chagne D, Troggio M (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 11. doi: 10.1186/1471-2148-11-9
  55. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329. doi: 10.1038/nature05286 PubMedGoogle Scholar
  56. Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, Main D (2008) GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res 36:D1034–D1040. doi: 10.1093/nar/gkm803 PubMedPubMedCentralGoogle Scholar
  57. Juroszek P, Tiedemann A (2011) Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathol 60(1):100–112. doi: 10.1111/j.1365-3059.2010.02410.x Google Scholar
  58. Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genome 4(4):647–661. doi: 10.1007/s11295-008-0140-6 Google Scholar
  59. Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111(8):1504–1513. doi: 10.1007/s00122-005-0079-z PubMedGoogle Scholar
  60. Lee MH, Bostock RM (2006) Induction, regulation, and role in pathogenesis of appressoria in Monilinia fructicola. Phytopathology 96(10):1072–1080. doi: 10.1094/phyto-96-1072 PubMedGoogle Scholar
  61. Lee MH, Bostock RM (2007) Fruit exocarp phenols in relation to quiescence and development of Monilinia fructicola infections in Prunus spp.: a role for cellular redox? Phytopathology 97(3):269–277. doi: 10.1094/phyto-97-3-0269 PubMedGoogle Scholar
  62. Lopes MS, Sefc KM, Laimer M, Machado AD (2002) Identification of microsatellite loci in apricot. Mol Ecol Notes 2(1):24–26Google Scholar
  63. Luo CX, Cox KD, Amiri A, Schnabel G (2008) Occurrence and detection of the DMI resistance-associated genetic element ‘Mona’ in Monilinia fructicola. Plant Dis 92(7):1099–1103. doi: 10.1094/pdis-92-7-1099 Google Scholar
  64. Marandel G, Salava J, Abbott A, Candresse T, Decroocq V (2009) Quantitative trait loci meta-analysis of Plum pox virus resistance in apricot (Prunus armeniaca L.): new insights on the organization and the identification of genomic resistance factors. Mol Plant Pathol 10(3):347–360. doi: 10.1111/j.1364-3703.2009.00535.x PubMedGoogle Scholar
  65. Mari M, Casalini L, Baraldi E, Bertolini P, Pratella GC (2003) Susceptibility of apricot and peach fruit to Monilinia laxa during phenological stages. Postharvest Biol Technol 30(1):105–109. doi: 10.1016/s0925-5214(03)00138-8 Google Scholar
  66. Martinez-Garcia PJ, Parfitt DE, Bostock RM, Fresnedo-Ramirez J, Vazquez-Lobo A, Ogundiwin EA, Gradziel TM, Crisosto CH (2013a) Application of genomic and quantitative genetic tools to identify candidate resistance genes for brown rot resistance in peach. PLos ONE 8(11):12. doi: 10.1371/journal.pone.0078634 Google Scholar
  67. Martinez-Garcia PJ, Parfitt DE, Ogundiwin EA, Fass J, Chan HM, Ahmad R, Lurie S, Dandekar A, Gradziel TM, Crisosto CH (2013b) High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L.). Tree Genet Genome 9(1):19–36. doi: 10.1007/s11295-012-0522-7 Google Scholar
  68. May-De-Mio LL, Tutida I, Motta ACV, Dolinski MA, Serrat BM, Monteguti D (2008) Rate of application of nitrogen and potassium in relation to brown rot and scab in plum ‘Reubennel’ in the region of Araucaia, Parana. Trop Plant Pathol 33(1):35–40Google Scholar
  69. Measham PF, Bound SA, Gracie AJ, Wilson SJ (2009) Incidence and type of cracking in sweet cherry (Prunus avium L.) are affected by genotype and season. Crop Pasture Sci 60(10):1002–1008. doi: 10.1071/cp08410 Google Scholar
  70. Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50(50):267–294. doi: 10.1146/annurev-phyto-081211-172955 PubMedGoogle Scholar
  71. Messina R, Lain O, Marrazzo MT, Cipriani G, Testolin R (2004) New set of microsatellite loci isolated in apricot. Mol Ecol Notes 4(3):432–434. doi: 10.1111/j.1471-8286.2004.00674.x Google Scholar
  72. Mnejja M, Garcia-Mas M, Howad W, Badenes ML, Arus P (2004) Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4(2):163–166. doi: 10.1111/j.1471-8286.2004.00603.x Google Scholar
  73. Mnejja M, Garcia-Mas J, Howad W, Arus P (2005) Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol Ecol Notes 5(3):531–535. doi: 10.1111/j.1471-8286.2005.00977.x Google Scholar
  74. Mnejja M, Garcia-Mas J, Audergon J-M, Arus P (2010) Prunus microsatellite marker transferability across rosaceous crops. Tree Genet Genome 6(5):689–700. doi: 10.1007/s11295-010-0284-z Google Scholar
  75. Ogundiwin EA, Peace CP, Nicolet CM, Rashbrook VK, Gradziel TM, Bliss FA, Parfitt D, Crisosto CH (2008) Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage browning in peach. Tree Genet Genome 4(3):543–554. doi: 10.1007/s11295-007-0130-0 Google Scholar
  76. Pacheco I, Bassi D (2010) Susceptibility to Brown Rot (Monilinia spp.) in Peach (Prunus persica L. Batsch): influence of the maturity date in an F1 progeny. Minerva Biotecnologica Suppl 1(2):57–58Google Scholar
  77. Pascal T, Levigneron A, Kervella J, Nguyenthe C (1994) Evaluation of 2 screening methods for resistance of apricot, plum and peach to Monilinia laxa. Euphytica 77(1–2):19–23Google Scholar
  78. Phillips DJ (1984) Effect of temperature on Monilinia fructicola conidia produced on fresh stone fruit. Plant Dis 68:610–612Google Scholar
  79. Pirona R, Eduardo I, Pacheco I, Linge CDS, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D, Rossini L (2013) Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biology 13. doi: 10.1186/1471-2229-13-166
  80. Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109(4):884–897. doi: 10.1007/s00122-004-1703-z PubMedGoogle Scholar
  81. Rant JC, Arraiano LS, Chabannes M, Brown JKM (2013) Quantitative trait loci for partial resistance to Pseudomonas syringae pv. maculicola in Arabidopsis thaliana. Mol Plant Pathol 14(8):828–837. doi: 10.1111/mpp.12043 PubMedPubMedCentralGoogle Scholar
  82. Ritchie DF (2000) Brown rot of stone fruits. Plant Health Instr. doi: 10.1094/PHI-I-2000-1025-01 Google Scholar
  83. Scorza R, Mehlenbacher SA, Lightner GW (1985) Inbreeding and coancestry of freestone peach cultivars of the Eastern United Sstates and implications for peach germplasm improvement. J Am Soc Hortic Sci 110(4):547–552Google Scholar
  84. Singh R, Tan SG, Panandam JM, Rahman RA, Ooi LCL, Low ETL, Sharma M, Jansen J, Cheah SC (2009) Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm. BMC Plant Biol 9:19. doi: 10.1186/1471-2229-9-114 Google Scholar
  85. Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach Prunus persica (L.) Batsch. Theor Appl Genet 101(3):421–428Google Scholar
  86. Sosinski B, Shulaev V, Dhingra A, Kalyanaraman A, Bumgarner R, Rokhsar D, Verde I, Velasco R, Abbott AG (2009) Rosaceaous genome sequencing: perspectives and progress genetics and genomics of Rosaceae. In: Folta KM, Gardiner SE (eds) Plant genetics and genomics: crops and models, vol 6. Springer, New York, pp 601–615. doi: 10.1007/978-0-387-77491-6_28 Google Scholar
  87. Stange M, Utz HF, Schrag TA, Melchinger AE, Wurschum T (2013) High-density genotyping: an overkill for QTL mapping? Lessons learned from a case study in maize and simulations. Theor Appl Genet 126(10):2563–2574. doi: 10.1007/s00122-013-2155-0 PubMedGoogle Scholar
  88. Swaminathan K, Chae WB, Mitros T, Varala K, Xie L, Barling A, Glowacka K, Hall M, Jezowski S, Ming R, Hudson M, Juvik JA, Rokhsar DS, Moose SP (2012) A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genomics 13:17. doi: 10.1186/1471-2164-13-142 Google Scholar
  89. Tamm L, Minder CE, Fluckiger W (1995) Phenological analysis of brown rot blossom blight of sweet cherry caused by Monilinia laxa. Phytopathology 85(4):401–408Google Scholar
  90. Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43(3):512–520PubMedGoogle Scholar
  91. Tian SP, Bertolini P (1999) Effect of temperature during conidial formation of Monilinia laxa on conidial size, germination and infection of stored nectarines. J Phytopathol-Phytopathol Z 147(11–12):635–641Google Scholar
  92. Topp B, Sherman W, MCB. R (2008) Low-chill cultivar development. In: D.R. Layne and D.Bassi(eds) The peach: botany, production and uses. CABI, Wallingford, pp 106-138Google Scholar
  93. Van Ooijen JW (2006) Joinmap ® 4, Software for the calculation of genetic linkage maps in experimental populations. Wageningen, NetherlandsGoogle Scholar
  94. Van Ooijen JW (2009) MapQTL ® 6, Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B. V, Wageningen, NetherlandsGoogle Scholar
  95. Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93(5):343–349. doi: 10.1017/s0016672311000279 Google Scholar
  96. Vaughan SP, Russell K (2004) Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol Ecol Notes 4(3):429–431. doi: 10.1111/j.1471-8286.2004.00673.x Google Scholar
  97. Vendramin E, Dettori MT, Giovinazzi J, Micali S, Quarta R, Verde I (2006) A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Mol Ecol Notes 7(2):307–310. doi: 10.1111/j.1471-8286.2006.01590.x Google Scholar
  98. Verde I, Lauria M, Dettori M, Vendramin E, Balconi C, Micali S, Wang Y, Marrazzo MT, Cipriani G, Hartings H, Testolin R, Abbott AG, Motto M, Quarta R (2005) Microsatellite and AFLP markers in the Prunus persica L. (Batsch) x P. ferganensis BC(1)linkage map: saturation and coverage improvement. Theor Appl Genet 111(6):1013–1021. doi: 10.1007/s00122-005-0006-3 PubMedGoogle Scholar
  99. Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mockler TC, Bryant DW, Wilhelm L, Troggio M, Sosinski B, Aranzana MJ, Arus P, Iezzoni A, Morgante M, Peace C (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated snp detection and validation in breeding germplasm. PLos ONE 7(4):e35668. doi: 10.1371/journal.pone.0035668 PubMedPubMedCentralGoogle Scholar
  100. Verde I, Abbott AG, Scalabrin S, Jung S, Shu SQ, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel LA, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein DM, Xuan PF, Del Fabbro C, Aramini V, Copetti D, Gonzalez S, Horner DS, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arus P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar DS, Int Peach Genome I (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45(5):487–U447. doi: 10.1038/ng.2586 PubMedGoogle Scholar
  101. Villarino M, Sandin-Espana P, Melgarejo P, De Cal A (2011) High chlorogenic and neochlorogenic acid levels in immature peaches reduce Monilinia laxa infection by interfering with fungal melanin biosynthesis. J Agric Food Chem 59(7):3205–3213. doi: 10.1021/jf104251z PubMedGoogle Scholar
  102. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78PubMedGoogle Scholar
  103. Wagner Júnior A, Bassols Raseira MC, Pierobom CR, da Silva JB, Franzon RC (2008) Avaliação de diferentes genótipos de pessegueiro quanto à reação a Monilinia fructicola (Wint.) Honey em frutos. Rev CERES 55(2):83–88Google Scholar
  104. Wagner Junior A, Fabiane KC, Marth Alves De Oliveira JS, Zanela J, Citadin I (2011) Peaches tree genetic divergence for brown rot reaction. Revista Brasileira De Fruticultura 33(1)Google Scholar
  105. Walter M, McLlaren GF, Fraser JA, Frampton CM, Boyd-Wilson KSH, Perry JH (2004) Methods of screening apricot fruit for resistance to brown rot caused by Monilinia spp. Aust Plant Pathol 33(4):541–547. doi: 10.1071/ap04062 Google Scholar
  106. Wang Y, Georgi LL, Zhebentyayeva TN, Reighard GL, Scorza R, Abbott AG (2002) High-throughput targeted SSR marker development in peach (Prunus persica). Genome 45(2):319–328. doi: 10.1139/g01-153 PubMedGoogle Scholar
  107. Wilcox WF (1989) Influence of environment and inoculum density on the incidence of brown rot blossom blight of sour cherry. Phytopathology 79(5):530–534Google Scholar
  108. Xu Y, Ma RC, Xie H, Liu JT, Cao MQ (2004) Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome 47(6):1091–1104. doi: 10.1139/g04-058 PubMedGoogle Scholar
  109. Yamamoto T, Mochida K, Imai T, Shi YZ, Ogiwara I, Hayashi T (2002) Microsatellite markers in peach Prunus persica (L.) Batsch derived from an enriched genomic and cDNA libraries. Mol Ecol Notes 2(3):298–301. doi: 10.1046/j.1471-8286.2002.00242.x Google Scholar
  110. Yamamoto T, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J Japan Soc Hortic Sc 74(3):204–213Google Scholar
  111. Yang NN, Reighard G, Ritchie D, Okie W, Gasic K (2013) Mapping quantitative trait loci associated with resistance to bacterial spot (Xanthomonas arboricola pv. pruni) in peach. Tree Genet Genome 9(2):573–586. doi: 10.1007/s11295-012-0580-x Google Scholar
  112. Yoshimura MA, Luo Y, Ma ZH, Michailides TJ (2004) Sensitivity of Monilinia fructicola from stone fruit to thiophanate-methyl, iprodione, and tebuconazole. Plant Dis 88(4):373–378Google Scholar
  113. Zhang GR, Sebolt AM, Sooriyapathirana SS, Wang DC, Bink M, Olmstead JW, Iezzoni AF (2009) Fruit size QTL analysis of an F-1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genome 6(1):25–36. doi: 10.1007/s11295-009-0225-x Google Scholar
  114. Zhou MX, Johnson P, Zhou GF, Li CD, Lance R (2012) Quantitative trait loci for waterlogging tolerance in a Barley Cross of Franklin x YuYaoXiangTian Erleng and the relationship between waterlogging and salinity tolerance. Crop Sci 52(5):2082–2088. doi: 10.2135/cropsci2012.01.0008 Google Scholar
  115. Ziosi V, Noferini M, Fiori G, Tadiello A, Trainotti L, Casadoro G, Costa G (2008) A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit. Postharvest Biol Technol 49(3):319–329. doi: 10.1016/j.postharvbio.2008.01.017 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Igor Pacheco
    • 1
  • Daniele Bassi
    • 1
  • Iban Eduardo
    • 2
    • 4
  • Angelo Ciacciulli
    • 1
  • Raul Pirona
    • 2
    • 3
  • Laura Rossini
    • 1
    • 2
  • Alberto Vecchietti
    • 2
    • 5
  1. 1.Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, AgroenergiaUniversità degli Studi di MilanoMilanItaly
  2. 2.Parco Tecnologico PadanoLodiItaly
  3. 3.Consiglio Nazionale per la RicercaInstitute of Agricultural Biology and BiotechnologyMilanItaly
  4. 4.Departament de Genètica VegetalCentre de Recerca en Agrigenòmica CSIC-IRTA-UAB (CRAG), Campus UAB08193 BellaterraSpain
  5. 5.Monsanto Vegetable Seeds DivisionBergschenhoekThe Netherlands

Personalised recommendations