Tree Genetics & Genomes

, Volume 10, Issue 4, pp 1103–1112 | Cite as

Genetic diversity and parentage of Tunisian wild and cultivated grapevines (Vitis vinifera L.) as revealed by single nucleotide polymorphism (SNP) markers

  • Sana Ghaffari
  • Nejib Hasnaoui
  • Lalla Hasna Zinelabidine
  • Ali Ferchichi
  • José M. Martínez-Zapater
  • Javier IbáñezEmail author
Original Paper


Based on 261 single nucleotide polymorphism (SNP) markers, we analyzed 57 grapevine genotypes, consisting of 29 wild grapevines (Vitis vinifera subsp. sylvestris) prospected from the northwest part of Tunisia and 28 cultivated accessions (V. vinifera subsp. vinifera) maintained in the repository of the Arid Land Institute of Medenine (Tunisia). Pair-wise multilocus comparison with the ICVV SNP database allowed the identification of 13 cultivated genotypes, including ten synonymous groups with known Mediterranean or international varieties, three cases of color sports, and two misnomers. Genotypic analysis showed a high level of genetic diversity for both wild and cultivated groups. Multivariate and structure analyses clearly differentiated wild from cultivated grapevines and showed high average posterior probabilities of assignment to their group of origin. The clustering results largely supported the perceived classification and reflect that most of the present Tunisian cultivated varieties do not derive directly from the local wild populations but could correspond to materials introduced from different locations during historical times. Parentage analysis allowed the determination of the genetic origin of four Tunisian cultivars, “Garai”, “Jerbi” (from Kerkennah), “Mahdoui”, and “Reine de Vignes faux”, and showed that “Heptakilo” and “Planta Fina”, two old and widely distributed varieties in the Mediterranean basin, had an important role in the origin of Tunisian grapevines. The present study demonstrates the efficacy of SNP makers for germplasm characterization and genetic studies in grapevine.


Genetic structure Germplasm characterization Pedigree analysis SNP markers Sylvestris grapevine 



This work was funded by AECID (Agencia Española de CooperaciónInternacionalpara el Desarrollo, Spain) within the framework of projects A/023457/09 and A/031064/10.

We are indebted to many people for their various contributions to this research, especially to all the staff of forest services in northwest part of Tunisia for their support during collecting of wild grapevine material and Silvia Hernáiz for laboratory technical assistance.

Data Archiving Statement

All the SNP data of Tunisian grapevines used in this work will be made publicly available through DRYAD ( The data is also included in the main manuscript and in the associated supplemental data.

Supplementary material

11295_2014_746_MOESM1_ESM.xlsx (121 kb)
ESM 1 (XLSX 120 kb)
11295_2014_746_MOESM2_ESM.docx (21 kb)
ESM 2 (DOCX 21 kb)


  1. Abdelkafi J (2005) Le vignoble du Cap Bon (Tunisie). In: Les Paysages culturels viticoles. Étude thématique dans le cadre de la Convention du Patrimoine mondial de l’UNESCO, pp 139-141Google Scholar
  2. Arroyo-García R, Lefort F, De Andrés MT, Ibáñez J, Borrego J, Jouve N, Cabello F, Martínez-Zapater JM (2002) Chloroplast microsatellite polymorphisms in Vitis species. Genome 45:1142–1149PubMedCrossRefGoogle Scholar
  3. Cabezas JA, Ibáñez J, Lijavetzky D, Vélez D, Bravo G, Rodríguez V, Carreño I, Jermakow AM, Carreño J, Ruiz-García L, Thomas MR, Martinez-Zapater JM (2011) A 48 SNP set for grapevine cultivar identification. BMC Plant Biol 11:153PubMedCentralPubMedCrossRefGoogle Scholar
  4. Chetouh C (1991) Study monographic of indigenous type of grapevines of North Africa (Algeria, Morocco, Tunisia, Egypt). Dissertation. Ecole Nationale Superieured' Agriculture of Montpellier.Google Scholar
  5. Di Vecchi-Staraz M, Laucou V, Bruno G, Lacombe T, Gerber S, Bourse T, Boselli M, This P (2009) Low level of pollen-mediated gene flow from cultivated to wild grapevine: consequences for the evolution of the endangered subspecies Vitis vinifera L. subsp. silvestris. J Hered 100:66–75PubMedCrossRefGoogle Scholar
  6. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  7. Falush D, Stephens MW, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7(4):574–578. doi: 10.1111/j.1471-8286.2007.01758.x, PMID: 18784791PubMedCentralPubMedCrossRefGoogle Scholar
  8. Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. CurrOpin Plant Biol 12:211–217CrossRefGoogle Scholar
  9. Ghaffari S, Hasnaoui N, Zinelabidine LH, Ferchichi A, Martínez-Zapater JM, Ibáñez J (2013) Genetic identification and origin of grapevine cultivars (Vitis vinifera L.) in Tunisia. Am J Enol Vitic 64:538–544CrossRefGoogle Scholar
  10. Greene JA, Kehoe DP (1991) Mago the Carthaginian on agriculture: archeology and the ancient sources. In Proceedings for the Congress International des Etudes pheniciennesetpuniques, Tunis, Tunisia, pp 11–16Google Scholar
  11. Isnard H (1966) Viticulture nord-africaine. In: Flory M, Etienne B (eds) Annuaire de l'Afrique du Nord-Centre national de la recherche scientifique. Centre de recherches sur l'Afrique méditerranéenne (CRAM), Paris, France, pp 37–48Google Scholar
  12. Ji K, Zhang D, Motilal LA, Boccara M, Lachenaud P, Meinhardt LW (2013) Genetic diversity and parentage in farmer varieties of cacao (Theobroma cacao L.) from Honduras and Nicaragua as revealed by single nucleotide polymorphism (SNP) markers. Genet Resour Crop Evol 60(2):441–453CrossRefGoogle Scholar
  13. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1006–1099CrossRefGoogle Scholar
  14. Lacombe T, Boursiquot JM, Laucou V, Di Vecchi-Staraz M, Péros JP, This P (2013) Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor Appl Genet 126:401–414PubMedCrossRefGoogle Scholar
  15. Lijavetzky D, Cabezas J, Ibanez A, Rodriguez V, Martinez-Zapater J (2007) High-throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics 8:424PubMedCentralPubMedCrossRefGoogle Scholar
  16. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655PubMedCrossRefGoogle Scholar
  17. Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia JM, Ware D, Bustamante CD, Buckler ES (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci USA 108(9):3530–3535. doi: 10.1073/pnas.1009363108 PubMedCentralPubMedCrossRefGoogle Scholar
  18. OIV (2013) OIV vine and wine outlook 2008-2009. Organisation Internationale de la Vigne et du Vin, BelgiumGoogle Scholar
  19. Park SJ (2001) Microsatellite toolkit for Excel. Smurfit Institute of Genetics. Trinity College. University of Dublin, IrelandGoogle Scholar
  20. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  21. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539PubMedCentralPubMedCrossRefGoogle Scholar
  22. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  23. Riahi L, Laucou V, Le Cunff L, Zoghlami N, Boursiquot JM, Lacombe T, El-Heit K, Mliki A, This P (2010) Genetic structure and differentiation among grapevines (Vitis vinifera) accessions from Maghreb region. Genet Resour Crop Evol 57:255–272CrossRefGoogle Scholar
  24. Riahi L, Zoghlami N, Laucou V, Mliki A, This P (2011) Use of chloroplast microsatellite markers as a tool to elucidate polymorphism, classification and origin of Tunisian grapevines. Sci Hortic 130:781–786CrossRefGoogle Scholar
  25. Riahi L, Laucou V, Le Cunff L, Zoghlami N, Boursiquot JM, Lacombe T, El-Heit K, Mliki A, This P (2012) Highly polymorphic nSSR markers: a useful tool to assess origin of North African cultivars and to provide additional proofs of secondary grapevine domestication events. Sci Hortic 141:53–60CrossRefGoogle Scholar
  26. Riahi L, Zoghlami N, Fournier-Level A, Dereeper A, Le Cunff L, Laucou V, Mliki A, This P (2013) Characterization of single nucleotide polymorphism in Tunisian grapevine genome and their potential for population genetics and evolutionary studies. Genet Resour Crop Evol 60:1139–1151CrossRefGoogle Scholar
  27. Snoussi H, Harbi Ben Slimane M, Ruiz-García L, Martínez-Zapater JM, Arroyo-García R (2004) Genetic relationship among cultivated and wild grapevine accessions from Tunisia. Genome 47:1211–1219PubMedCrossRefGoogle Scholar
  28. Strefeler MS, Weeden NF, Reisch BI (1992) Inheritance of chloroplast DNA in 2 full-sib Vitis populations. Vitis 31(4):183–187Google Scholar
  29. Zoghlami N, Riahi L, Laucou V, Lacombe T, Mliki A, Ghorbel A, This P (2009) Origin and genetic diversity of Tunisian grapes as revealed by microsatellite markers. Sci Hortic 120:479–486CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sana Ghaffari
    • 1
  • Nejib Hasnaoui
    • 2
  • Lalla Hasna Zinelabidine
    • 3
  • Ali Ferchichi
    • 1
  • José M. Martínez-Zapater
    • 3
  • Javier Ibáñez
    • 3
    Email author
  1. 1.Dry Land Farming and Oasis Cropping LaboratoryArid Land InstituteMedenineTunisia
  2. 2.Unité de Chimie Biologique IndustrielleGembloux Agro-Bio TechGemblouxBelgium
  3. 3.Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja)Complejo Científico TecnológicoLogroñoSpain

Personalised recommendations