Tree Genetics & Genomes

, Volume 10, Issue 4, pp 1093–1101

Pop’s Pipes: poplar gene expression data analysis pipelines

  • Xiang Li
  • Chathura Gunasekara
  • Yufeng Guo
  • Hang Zhang
  • Liang Lei
  • Sermsawat Tunlaya-Anukit
  • Victor Busov
  • Vincent Chiang
  • Hairong Wei
Original Paper

DOI: 10.1007/s11295-014-0745-x

Cite this article as:
Li, X., Gunasekara, C., Guo, Y. et al. Tree Genetics & Genomes (2014) 10: 1093. doi:10.1007/s11295-014-0745-x

Abstract

We developed multiple gene expression pipelines and assembled them into a web-based tool called Pop’s Pipes to facilitate preprocessing and analysis of substantial poplar gene expression data. The input data can be spatiotemporal microarray and RNA-seq data from comparable tissues, time points, or treatment-vs-control conditions. Pop’s Pipes can be used to identify differentially expressed genes between one or multiple paired tissues, time points, or treatment-vs-control conditions in a single in silico analysis. The differentially expressed genes (DEGs) obtained for each comparison will be automatically analyzed by Pop’s Pipes for identifying significantly enriched gene ontologies and interpro protein domains. Also, significantly changed metabolic pathways across all input data sets will be identified. We also integrated a pipeline into Pop's Pipes for constructing any of three type gene ontology trees when a short list of gene ontologies from biological processes, molecular functions, or cellular components is used as an input. The resulting information from Pop’s Pipes enables scrutiny to create spatiotemporal models and hypotheses to understand how poplar develops and functions. Pop’s Pipes can analyze a microarray or RNA-seq data set with 10 time points in 4–10 h, with each time point containing three replicates of treatments and three controls. Such a data set usually takes a bioinformatician a few months to a year to analyze. Pop’s Pipes can thus save users tremendous amounts of research time when large numbers of comparative data need to be analyzed.

Keywords

Poplar Microarray RNA-seq data Differentially expressed genes Pathway enrichment analysis Gene ontology enrichment analysis Protein domain enrichment analysis Pipeline Gene ontology tree 

Supplementary material

11295_2014_745_MOESM1_ESM.xlsx (6.9 mb)
Supplemental file 1(XLSX 7086 kb)
11295_2014_745_MOESM2_ESM.xlsx (199 kb)
Supplemental file 2(XLSX 199 kb)
11295_2014_745_MOESM3_ESM.doc (32 kb)
Supplemental file 3(DOC 31 kb)

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xiang Li
    • 1
  • Chathura Gunasekara
    • 2
    • 4
  • Yufeng Guo
    • 1
  • Hang Zhang
    • 1
  • Liang Lei
    • 3
  • Sermsawat Tunlaya-Anukit
    • 4
  • Victor Busov
    • 5
    • 6
  • Vincent Chiang
    • 4
    • 7
  • Hairong Wei
    • 1
    • 5
    • 6
    • 7
  1. 1.Department of Computer ScienceMichigan Technological UniversityHoughtonUSA
  2. 2.Computer Science and Engineering ProgramMichigan Technological UniversityHoughtonUSA
  3. 3.Department of Computer TechnologyChongqing University of Science and TechnologyChongqingPeople’s Republic of China
  4. 4.Forest Biotechnology Group, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighUSA
  5. 5.School of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonUSA
  6. 6.Biotechnology Research CenterMichigan Technological UniversityHoughtonUSA
  7. 7.State Key Laboratory of Forest Tree Genetics and BreedingNortheast Forestry UniversityHarbinPeople’s Republic of China

Personalised recommendations