Tree Genetics & Genomes

, Volume 10, Issue 4, pp 1027–1043 | Cite as

Landscape genetics of Persian walnut (Juglans regia L.) across its Asian range

  • Paola Pollegioni
  • Keith E. Woeste
  • Francesca Chiocchini
  • Irene Olimpieri
  • Virginia Tortolano
  • Jo Clark
  • Gabriel E. Hemery
  • Sergio Mapelli
  • Maria Emilia Malvolti
Original Paper

Abstract

Persian walnut (Juglans regia L) is an economically important species cultivated worldwide for its wood and nuts. Despite the increasing interest in the development of conservation strategies for walnut germplasm, an accurate and full-scale overview of wild genetic resources of J. regia has not been conducted because natural populations are located in regions of Asia historically difficult to access. In this study, we estimated the genetic diversity and spatial genetic structure of 39 autochthonous Persian walnut populations sampled across its Asian range using 14 neutral microsatellite markers. A landscape genetic overlay approach was applied to detect the areas of current reservoirs of walnut genetic diversity in the Asian range and to evaluate the role of landscape in shaping walnut genetic diversity since the Last Glacial Maximum. Although Persian walnut has been highly manipulated by humans over the last 2,000 years, we determined that patches of high genetic diversity still exist in the Caucasus and mountains of Central Asia where J. regia might have survived after Pleistocene glaciations. We detected a clear separation of Persian walnut into four main genetic clusters centered in (1) western Kyrgyzstan, (2) western and south–central Asia, (3) east–central Uzbekistan, and (4) Xinjiang and Shandong provinces (China). Overlay of maps showed a coincidence between groups of walnut populations and potential barriers to gene flow such as the Hindu Kush, Pamir, Tien Shan, and Himalaya mountains and the Karakum, Kyzyl Kum, and Taklamakan deserts. This study claimed the relevance of the preservation of walnut genetic resources in the Asian range.

Keywords

Landscape genetics Genetic diversity Population genetic structure Asia Nuclear microsatellites Juglans regia 

Supplementary material

11295_2014_740_MOESM1_ESM.docx (57 kb)
ESM 1(DOCX 56 kb)
11295_2014_740_MOESM2_ESM.docx (1.3 mb)
ESM 2(DOCX 1335 kb)
11295_2014_740_MOESM3_ESM.docx (24 kb)
ESM 3(DOCX 23 kb)
11295_2014_740_MOESM4_ESM.docx (24 kb)
ESM 4(DOCX 23 kb)
11295_2014_740_MOESM5_ESM.docx (303 kb)
ESM 5(DOCX 303 kb)
11295_2014_740_MOESM6_ESM.docx (30 kb)
ESM 6(DOCX 30 kb)
11295_2014_740_MOESM7_ESM.docx (37 kb)
ESM 7(DOCX 37 kb)
11295_2014_740_MOESM8_ESM.docx (33 kb)
ESM 8(DOCX 33 kb)

References

  1. Allen JRM, Huntley B (2009) Last interglacial palaeovegetation, palaeoenvironments and chronology: a new record from Lago Grande di Monticchio, southern Italy. Quat Sci Rev 28:1521–1538CrossRefGoogle Scholar
  2. Aradhya M, Woeste K, Velasco D (2010) Genetic diversity, structure and differentiation in cultivated walnut (Juglans regia L). Acta Horticult 861:127–132Google Scholar
  3. Bagnoli F, Vendramin GG, Buonamici A, Doulis G, Gonzàlez-Martìnez C, La Porta N, Magri D, Raddi P, Sebastiani F, Fineschi S (2009) Is Cupressus sempervirens native in Italy? An answer from genetic and paleobotanical data. Mol Ecol 18:2276–2286PubMedCrossRefGoogle Scholar
  4. Bai WN, Liao WJ, Zhang DY (2010) Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia. New Phytol 188:892–901PubMedCrossRefGoogle Scholar
  5. Balkenhol N, Waits LP, Dezzani RJ (2009) Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32:818–830CrossRefGoogle Scholar
  6. Bar-Yosef O, Belfer-Cohen A, Mesheviliani T, Jakeli N, Bar-Oz G, Boaretto E, Goldberg P, Kvavadze E, Matskevich Z (2011) Dzudzuana: an Upper Palaeolithic cave site in the Caucasus foothills (Georgia). Antiquity 85:331–349Google Scholar
  7. Beer R, Kaiser F, Schmidt K, Ammann B, Carraro G, Grisa E, Tinner W (2008) Vegetation history of the walnut forests in Kyrgyzstan (Central Asia): natural or anthropogenic origin? Quat Sci Rev 27:621–632CrossRefGoogle Scholar
  8. Bonnet E, Van der Peer Y (2002) ZT: a software tool for simple and partial Mantel tests. Ghent University. J Stat Softw 7:1–12. Available at http://bioinformatics.psb.ugent.be/software/details/ZT
  9. Breen AL, Murray DF, Olson MS (2012) Genetic consequences of glacial survival: the late Quaternary history of balsam poplar (Populus balsamifera L.) in North America. J Biogeogr 39:918–928CrossRefGoogle Scholar
  10. Carrion JS, Sanchez-Gomez P (1992) Palynological data in support of the survival of walnut (Juglans regia L.) in the western Mediterranean area during last glacial times. J Biogeogr 19:623–630CrossRefGoogle Scholar
  11. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  12. Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557PubMedCrossRefGoogle Scholar
  13. Djamali M, Brewer S, Breckle SW, Jackson ST (2012) Climatic determinism in phytogeographic regionalization: a test from the Irano-Turanian region, SW and Central Asia. Flora 207:237–249CrossRefGoogle Scholar
  14. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581PubMedCrossRefGoogle Scholar
  15. Eckert AJ, Bower AD, Gonzàlez-Martinez SC, Wegrzyn JL, Coop G, Neale DB (2010) Back to nature: genetic associations in a landscape context. Mol Ecol 19:3789–3805PubMedCrossRefGoogle Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  17. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50Google Scholar
  18. Felsenstein J (2005) PHYLIP (phylogeny inference package). Department of Genome Sciences, University of Washington, SeattleGoogle Scholar
  19. Fornari B, Malvolti ME, Taurchini D, Fineschi S, Beritognolo I, McCaglia E, Cannata F (2001) Isozyme and organellar DNA analysis of genetic diversity in natural/naturalized European and Asiatic walnut (Juglans regia) populations. Acta Horticult 544:167–178Google Scholar
  20. Gallimore R, Jacob R, Kutzbach J (2005) Coupled atmosphere–ocean–vegetation simulations for modern and mid-Holocene climates: role of extratropical vegetation cover feedbacks. Clim Dyn 25:755–776CrossRefGoogle Scholar
  21. Gao LM, Möller M, Zhang XM, Hollingsworth ML, Liu J, Mill RR, Gibby M, Li DZ (2007) High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Mol Ecol 16:4684–4698PubMedCrossRefGoogle Scholar
  22. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318PubMedCrossRefGoogle Scholar
  23. González-Martínez SC, Krutovsky KV, Neale DB (2006) Forest-tree population genomics and adaptive evolution. New Phytol 170:227–238PubMedCrossRefGoogle Scholar
  24. Guillot G, Rousset F (2013) Dismantling the Mantel tests. Methods Ecol Evol 4:336–344CrossRefGoogle Scholar
  25. Gunn BF, Aradhya M, Salick JM, Miller AJ, Yongping Y, Lin L, Xian H (2010) Genetic variation in walnuts (Juglans regia and J. sigillata; Juglandaceae): species distinctions, human impacts, and the conservation of agrobiodiversity in Yunnan, China. Am J Bot 97:660–671PubMedCrossRefGoogle Scholar
  26. Hemery G, Savill PS, Thakur A (2005) Height growth and flushing in common walnut (Juglans regia L.): 5-year results from provenance trials in Great Britain. Forestry 78:121–133CrossRefGoogle Scholar
  27. Henry P, Miquelle D, Sugimoto T, McCullough DR, Caccone A, Russello MA (2009) In situ population structure and ex situ representation of the endangered Amur tiger. Mol Ecol 18:3173–3184PubMedCrossRefGoogle Scholar
  28. Henry AG, Brooks AS, Piperno DR (2011) Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proc Natl Acad Sci U S A 108:486–491PubMedCentralPubMedCrossRefGoogle Scholar
  29. Hepenstrick D, Holderegger R, Thiel D, Gugerli F (2012) Genetic discontinuities in roe deer (Capreolus capreolus) coincide with fenced transportation infrastructure. Basic Appl Ecol 13:631–638CrossRefGoogle Scholar
  30. Hewitt N, Kellman M (2002) Tree seed dispersal among forest fragments: II. Dispersal abilities and biogeographical controls. J Biogeogr 29:351–363CrossRefGoogle Scholar
  31. Holderegger R, Buehler D, Gugerli F, Manel S (2010) Landscape genetics of plants. Trends Plant Sci 15:675–683PubMedCrossRefGoogle Scholar
  32. Impiumi G, Ramina A (1967) Ricerche sulla biologia fiorale e di fruttificazione del noce (J regia) I Osservazioni sulla morfologia fiorale e sul trasporto del polline. Riv Ortofrutticoltura Ital 51:538–543Google Scholar
  33. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodaly in analysis of population structure. Bioinformatics 14:1801–1806CrossRefGoogle Scholar
  34. Jin L, Chen F, Morrill C, Otto-Bliesner BL, Rosenbloom N (2012) Causes of early Holocene desertification in arid central Asia. Clim Dyn 38:1577–1591CrossRefGoogle Scholar
  35. Jost L (2008) G ST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026PubMedCrossRefGoogle Scholar
  36. Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543CrossRefGoogle Scholar
  37. Karimi R, Ershadi A, Vahdati K, Woeste K (2010) Molecular characterization of Persian walnut populations in Iran with microsatellites markers. J Am Soc Hortic Sci 45:1403–1406Google Scholar
  38. Keller D, Van Strien MJ, Holderegger R (2012) Do landscape barriers affect functional connectivity of populations of an endangered damselfly? Freshwater Biol 57:1373–1384CrossRefGoogle Scholar
  39. Kolov O (1998) Ecological characteristics of the walnut–fruit forests of southern Kyrgyzstan. In: Blaser J, Carter J, Gilmour D (eds) Biodiversity and sustainable use of Kyrgyzstan’s walnut–fruit forests. English version. IUCN, Intercooperation, Gland, pp 59–61Google Scholar
  40. Krebs P, Conedera M, Pradella M, Torriani D, Felber M, Tinner W (2004) Quaternary refugia of the sweet chestnut (Castanea sativa Mill.): an extended palynological approach. Veg Hist Archaeobot 13:145–160CrossRefGoogle Scholar
  41. Lei M, Wang Q, Wu Z-J, López-Pujol J, Li D-Z, Zhang Z-Y (2012) Molecular phylogeography of Fagus engleriana (Fagaceace) in subtropical China: limited admixture among multiple refugia. Tree Genet Genomes 8:1203–1212CrossRefGoogle Scholar
  42. Lenda M, Skórka P, Knops JMH, Moron D, Tworek S, Woyciechowski M (2012) Plant establishment and invasions: an increase in a seed disperser combined with land abandonment causes an invasion of the non-native walnut in Europe. Proc R Soc B 279:1491–1497PubMedCentralPubMedCrossRefGoogle Scholar
  43. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247PubMedCrossRefGoogle Scholar
  44. Manel S, Holderegger R (2013) Ten years of landscape genetics. Trends Ecol Evol 28:614–621PubMedCrossRefGoogle Scholar
  45. Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190PubMedCrossRefGoogle Scholar
  46. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  47. Mapelli S, Alexandrovsky ES (2011) Study of biodiversity and genetic resources of walnut in Uzbekistan. IV: Eco-geographical of walnut stands and form diversity in Nurata ridge. National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, pp 1–56Google Scholar
  48. Mapelli S, Vildanova GV (2009) Study of biodiversity and genetic resources of walnut in Uzbekistan. I: Western Tien-Shan forests. National Research Council, Institute of Agricultural Biology and Biotechnology, Milan, pp 1–36Google Scholar
  49. Marshall TC, Slate J, Kruuk LEB, Pemberton M (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655PubMedCrossRefGoogle Scholar
  50. Mattioni C, Martin A, Pollegioni P, Cherubini M, Villani F (2013) Microsatellite markers reveal a strong geographic structure in European populations of Castanea sativa (Fagaceae): evidence for multiple glacial refugia. Am J Bot 100:1–11CrossRefGoogle Scholar
  51. McGranahan G, Leslie CA (1991) Walnuts (Juglans). In: Moore JN and Ballington JR (eds) Genetic resources of temperate fruit and nut crops, vol. 2. Acta Hort 290:907–951Google Scholar
  52. Messager E, Lebreton V, Marquer L, Russo-Ermolli E, Orain R, Renault-Miskovsky J, Lordkipanidze D, Despriée J, Peretto C, Arzarello M (2011) Palaeoenvironments of early hominins in temperate and Mediterranean Eurasia: new palaeobotanical data from Palaeolithic key-sites and synchronous natural sequences. Quat Sci Rev 30:1439–1447CrossRefGoogle Scholar
  53. Molnar TJ, Zaurov DE, Capik JM, Eisenman SW, Ford T, Nikolyi LV, Funk CR (2011) Persian walnuts (Juglans regia L.) in Central Asia. Annu Rep N Nutr Grow Assoc 101:56–69Google Scholar
  54. Murphy MA, Evans JS, Cushman SA, Storfer A (2008) Representing genetic variation as continuous surfaces: an approach for identifying spatial dependency in landscape genetic studies. Ecography 31:685–697CrossRefGoogle Scholar
  55. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  56. Parchman TL, Gompert Z, Mudge J, Schilkey FD, Benkman CW, Buerkle CA (2012) Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol Ecol 21:2991–3005PubMedCrossRefGoogle Scholar
  57. Peakall R, Smouse PE (2006) GenAlEx V6: genetic analysis in Excel. Population genetic software for teaching and research. The Australian National University, Canberra, Australia. Molec Ecol Notes 6:288–295. Available at http://www.anu.edu.au/BoZo/genAlEx/
  58. Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S, Vásquez-Carrillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418PubMedCrossRefGoogle Scholar
  59. Petit RJ, Brewer S, Bordac S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl UM, van Dam BC, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, de Vries SMG, Ziegenhagen B, de Beaulieu J-L, Kremer A (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecol Manag 156:49–74CrossRefGoogle Scholar
  60. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in effective population size from allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  61. Pollegioni P, Woeste K, Major A, Scarascia Mugnozza G, Malvolti ME (2009) Characterization of Juglans nigra (L.), Juglans regia (L.) and Juglans × intermedia (Carr.) by SSR markers: a case study in Italy. Silvae Genet 58:68–78Google Scholar
  62. Pollegioni P, Woeste K, Olimpieri I, Marandola D, Cannata F, Malvolti ME (2011) Long term human impacts on genetic structure of Italian walnut inferred by SSR markers. Tree Genetics Genomes 7:707–723CrossRefGoogle Scholar
  63. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  64. Qiu YX, Fu CX, Comes HP (2011) Plant molecular phytogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogenet Evol 59:225–244PubMedCrossRefGoogle Scholar
  65. Ricketts RD, Johson TC, Brown ET, Rasmussen KA, Romanovsky VV (2001) The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeogr Palaeoclimatol Palaeoecol 176:207–227CrossRefGoogle Scholar
  66. Rong-Ting X (1990) Discussion on the origin of walnut in China. Acta Horticult 284:353–361Google Scholar
  67. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  68. Salas-Salvadó J, Casa-Agustench P, Sala-Huetos A (2011) Cultural and historical aspects of Mediterranean nuts with emphasis on their attributed healthy and nutritional properties. Nutr Metab Cardiovasc 21:S1–S6CrossRefGoogle Scholar
  69. Schmidt M, Doerre A (2011) Changing meanings of Kyrgyzstan’s nut forests from colonial to post-Soviet times. Area 43(3):288–296CrossRefGoogle Scholar
  70. Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632CrossRefGoogle Scholar
  71. Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514PubMedCrossRefGoogle Scholar
  72. Sun J, Zhang Z (2008) Palynological evidence for the Mid-Miocene climatic optimum recorded in Cenozoic sediments of the Tian Shan Range, northwestern China. Glob Planet Chang 64:53–68CrossRefGoogle Scholar
  73. Tamura N, Hashimoto Y, Hayashi F (1999) Optimal distances for squirrels to transport and hoard walnuts. Anim Behav 58:635–642PubMedCrossRefGoogle Scholar
  74. Tamura N, Hashimoto Y, Hayashi F (2001) Walnut hoarding by the Japanese wood mouse, Apodemus speciosus Temminck. J For Res 6:187–190CrossRefGoogle Scholar
  75. Tang Z, Ding Z, White PD, Dong XX, Ji JL, Jiang HC, Luo P, Wang X (2011) Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan. Earth Planet Sci Lett 302:439–447CrossRefGoogle Scholar
  76. Thiel-Egenter C, Alvarez N, Holderegger R, Tribsch A, Englisch T, Wohlgemuth T, Ahlmer WR, Colli L, Dalmas JP, Gaudeul M, Gielly L, Jogan N, Lequette B, Linder HP, Martini F, Negrini R, Niklfeld H, Pellecchia M, Prosser F, Rioux D, Rossi P, Scheuerer M, Schönswetter P, Selvaggi A, vanLoo M, Winkler M, IntraBioDiv Consortium, Gugerli F (2011) Break zones in the distributions of alleles and species in alpine plants. J Biogeogr 38:772–782CrossRefGoogle Scholar
  77. Victory E, Glaubitz JC, Rhodes OE, Woeste KE (2006) Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. Am J Bot 93:118–126CrossRefGoogle Scholar
  78. Wang H, Pei D, Gu R, Wang B (2008) Genetic diversity and structure of walnut populations in central and southwestern China revealed by microsatellite markers. J Hortic Sci 133:197–203Google Scholar
  79. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  80. Widmer A, Lexer C (2001) Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecol Evol 16:267–269PubMedCrossRefGoogle Scholar
  81. Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562CrossRefGoogle Scholar
  82. Woeste K, Michler C (2011) Juglans. In: Kole C (ed) Wild crop relatives: Genomic and breeding resources, forest trees. Springer, Berlin, pp 77–87CrossRefGoogle Scholar
  83. Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Paola Pollegioni
    • 1
    • 2
  • Keith E. Woeste
    • 3
  • Francesca Chiocchini
    • 1
  • Irene Olimpieri
    • 1
  • Virginia Tortolano
    • 1
  • Jo Clark
    • 4
  • Gabriel E. Hemery
    • 5
  • Sergio Mapelli
    • 6
  • Maria Emilia Malvolti
    • 1
  1. 1.CNR Institute of Agro-environmental and Forest BiologyPoranoItaly
  2. 2.Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteUSA
  3. 3.USDA Forest Service, Hardwood Tree Improvement and Regeneration Center, Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteUSA
  4. 4.Earth TrustLittle Wittenham, AbingdonUK
  5. 5.Sylva FoundationLittle WittenhamUK
  6. 6.CNR Institute of Agricultural Biology and BiotechnologyMilanItaly

Personalised recommendations