Skip to main content
Log in

Opportunities of marker-assisted selection for Plum pox virus resistance in apricot breeding programs

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Evaluation of Plum pox virus (PPV) resistance is a laborious and expensive task, and the development of new accurate methods, including the use of molecular markers, would be very useful for breeding programs for resistance. In this work, the Plum pox virus resistance of 80 apricot genotypes of different genetic origins was evaluated in controlled greenhouse and natural field conditions. The genotypes for five simple sequence repeat (SSR) markers described as linked to PPV resistance were also determined. Depending on their behavior, cultivars were classified as resistant, susceptible, and uncertain, and the genotype was identified for each SSR linked to different phenotypes. Twenty genotypes were resistant and 37 susceptible in the greenhouse and in the field. However, 23 genotypes did not show clear behavior, probably due to the complex plant-virus interaction, so they were classified as uncertain. In general, results showed a narrow relationship between the SSRs PGS1.21 and PGS1.24, and resistance to PPV, although some genotypes did not show this relationship. Most of the susceptible genotypes did not show the alleles of resistance. Therefore, in most cases, marker-assisted selection (MAS) could be used as a means of screening new seedlings for early selection, making it possible to remove those that are susceptible. However, in certain cases, MAS using these markers has not proven to be completely effective. The origin of such discrepancies could be the presence of a second locus involved in PPV resistance. In addition, other factors affecting efficiency of MAS discussed in the work are the presence of null alleles and recombinant events. Resistant seedlings would have to be evaluated in greenhouse and natural conditions to confirm their actual behavior against PPV. From the breeding point of view, the use of homozygous resistant parents for the SSR resistance alleles, with good agronomic characteristics, would increase the efficiency of breeding programs, since all seedlings would be resistant regardless of the other parent. Finally, new molecular markers should be developed to accurately select resistant seedlings regardless of the resistant progenitors involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albrechtova L (1986) Investigations on the distribution of sharka virus (Plum pox) in tissue of Prunus domestica. Z Pflanz Pflanzenschutz 93:190–201

    Google Scholar 

  • Auderon JM, Dosba F, Karayiannis I, Dicenta F (1994) Amélioration de l´abricotier pour la resistance à la sharka. EPPO Bull 24:741–748

    Article  Google Scholar 

  • Badenes ML, Llácer G (2006) Breeding for resistance: breeding for Plum pox virus resistance apricots (Prunus armeniaca L.) in Spain. EPPO Bull 36:323–326

    Article  Google Scholar 

  • Boopathi NM (2013) Genetic mapping and marker assisted selection: basics, practice and benefits. Springer, New York, 293 pp

    Book  Google Scholar 

  • Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Mulley JC, Sutherland GR (1993) Incidence and origin of “null” alleles in the (AC)n microsatellite markers. Am J Hum Genet 52:922–927

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cambra M, Capote N, Cambra MA, Llácer G, Botella P, López A (2006) Epidemiology of sharka disease in Spain. EPPO Bull 36:271–275

    Article  Google Scholar 

  • Candresse T, MacQuaire G, Lanneau M, Bousalem M, Wetzel T, Quiot-Douine L, Quiot JB,  Dunez J (1994) Detection of Plum pox potyvirus and analysis of its molecular variability using immunocapture-PCR. EPPO Bull 24:585–595

    Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–195

    Article  CAS  Google Scholar 

  • Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Article  CAS  PubMed  Google Scholar 

  • Decroocq V, Foulongne M, Lambert P, Le Gall O, Mantin C, Pascal T, Schurdi-Levraud V, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genomics 272:680–689

    Article  CAS  PubMed  Google Scholar 

  • Dicenta F, Audergon JA (1998) Inheritance of resistance to Plum pox potyvirus (PPV) in ‘Stella’ apricot seedlings. Plant Breed 117:579–581

    Article  Google Scholar 

  • Dondini L, Lain O, Vendramin V, Rizzo M, Vivoli D, Adami M, Guidarelli M, Gaiotti F, Palmisano F, Bazzoni A, Boscia D, Geuna F, Tataranni S, Negri P, Castellano M, Savino V, Bassi D, Testolin R (2011) Identification of QTL for resistance to Plum pox virus strain M and D in Lito and Harcot apricot cultivars. Mol Breed 79:289–299

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Egea J, Burgos L, Martínez-Gómez P, Dicenta F (1999) Apricot breeding for sharka resistance at the CEBAS-CSIC, Murcia, Spain. Acta Horticult 488:153–157

    Google Scholar 

  • Egea J, Dicenta F, Burgos L (2004) ‘Rojo Pasión’ apricot. Hortscience 39:1490–1491

    Google Scholar 

  • Egea J, Rubio M, Campoy JA, Dicenta F, Ortega E, Nortes MD, Martínez-Gómez P, Molina A, Molina A Jr, Ruiz D (2010) ‘Mirlo Blanco’, ‘Mirlo Naranja’ and ‘Mirlo Rojo’: three new very early season apricots for the fresh market. Hortscience 45:1893–1894

    Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Gouta H, Ksia E, Buhner T, Moreno MA, Zarrouk M, Mliki A, Gorgocena Y (2010) Assessment of genetic diversity and relatedness among Tunisian almond germplasm using SSR markers. Hereditas 147:283–292

    Article  CAS  PubMed  Google Scholar 

  • Hartmann W, Neumüller M (2006) Breeding for resistance: breeding for Plum pox virus resistant plums (Prunus domestica L.) in Germany. EPPO Bull 36:332–336

    Article  Google Scholar 

  • Hurtado MA, Romero C, Vilanova S, Abbott AG, Llácer G, Badenes ML (2002) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.), and mapping of PPV (sharka) resistance. Theor Appl Genet 105:182–191

    Article  CAS  PubMed  Google Scholar 

  • Karayiannis I, Mainou A (1994) Resistance to Plum pox virus in apricots. EPPO Bull 24:761–766

    Article  Google Scholar 

  • Kegler H, Fuchs E, Grüntzig M, Schwarz S (1998) Some results of 50 years of research on the resistance to Plum pox virus. Acta Virol 42:200–215

    CAS  PubMed  Google Scholar 

  • Krska B, Salava J, Polák J, Komínek P (2002) Genetics of resistance to Plum pox virus in apricot. Plant Prot Sci 38:180–182

    Google Scholar 

  • Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111:1504–1513

    Article  CAS  PubMed  Google Scholar 

  • Lalli DA, Abbott AG, Zhebentyayeva TN, Badenes ML, Damsteegt V, Polák J, Krska B, Salava J (2008) A genetic linkage map for an apricot (Prunus armeniaca L.) BC1 population mapping Plum pox virus resistance. Tree Genet Genomes 4:481–493

    Article  Google Scholar 

  • Lambert P, Dicenta F, Rubio M, Audergon JM (2007) QTL analysis of resistance to sharka disease in the apricot (Prunus armeniaca L.) ‘Polonais’ x ‘Stark Early Orange’ F1 progeny. Tree Genet Genomes 3:299–309

    Article  Google Scholar 

  • Marandel G, Salava J, Abbott AG, Candresse T, Decroocq V (2009) Quantitative trait loci meta-analysis of Plum pox virus in apricot (Prunus armeniaca L.): new insights on the organization and the identification of genomic resistance factors. Mol Plant Pathol 10:347–360

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Gómez P, Dicenta F (2001) Distribution of coat protein and nucleic acid of Plum pox virus (PPV) in seedlings of peach rootstock GF305 and apricot cv. Real Fino. Phytopathol Mediterr 40:157–164

    Google Scholar 

  • Martínez-Gómez P, Dicenta F, Audergon JM (2000) Behaviour of apricot (Prunus armeniaca L.) cultivars in presence of sharka (Plum pox virus): a review. Agronomie 20:407–422

    Article  Google Scholar 

  • Martínez-Gómez P, Dicenta F, Egea J (2003) Effect of a traditional control method on the spread of sharka in an apricot orchard in Spain. Phytopathol Mediterr 42:161–166

    Google Scholar 

  • Moustafa TA, Badenes ML, Martínez-Calvo J, Llácer G (2001) Determination of resistance to sharka (Plum pox) virus in apricot. Sci Hortic 91:59–70

    Article  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction. Proc Natl Acad Sci U S A 76:5269–5273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pilarová P, Marandel G, Decroocq V, Salava J, Krska B, Abbott AG (2010) Quantitative trait analysis of resistance to Plum pox virus resistance in apricot F1 “Harlayne” x “Vestar”. Tree Genet Genomes 6:467–475

    Article  Google Scholar 

  • Rubio M, Audergon JM, Martinez-Gomez P, Dicenta F (2007) Testing hypothesis of genetic control for Plum pox virus resistance in apricot. Sci Hortic 112:361–365

    Article  CAS  Google Scholar 

  • Rubio M, Ruiz D, Egea J, Martínez-Gómez P, Dicenta F (2008) Evaluation of apricot resistance to Plum pox virus in controlled greenhouse and natural field conditions. Sci Hortic 116:176–179

    Article  Google Scholar 

  • Rubio M, García-Ibarra A, Martínez-Gómez P, Dicenta F (2009) Analysis of the main factors involved in the evaluation of Prunus resistance to Plum pox virus (Sharka) in control greenhouse conditions. Sci Hortic 123:46–50

    Article  Google Scholar 

  • Rubio M, Martínez-Gómez P, García-Brunton J, Pascal T, García-Ibarra A, Dicenta F (2012) Sensitivity of peach cultivars against a Dideron isolate of Plum pox virus. Sci Hortic 144:81–86

    Article  Google Scholar 

  • Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster G (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954

    Article  CAS  PubMed  Google Scholar 

  • Sicard O, Marandel G, Soriano JM, Lalli DA, Lambert P, Salava J, Badenes ML, Abbott AG, Decroocq V (2008) Flanking the major Plum pox virus resistance locus in apricot with co-dominant markers (SSRs) derived from candidate resistance genes. Tree Genet Genomes 4:359–365

    Article  Google Scholar 

  • Sochor J, Babula P, Adam V, Krska B, Kizek R (2012) Sharka: the past, the present and the future. Viruses 4:2853–2901

    Article  PubMed Central  PubMed  Google Scholar 

  • Soriano JM, Vera-Ruiz EM, Vilanova S, Martínez-Calvo J, Llácer G, Badenes ML, Romero C (2008) Identification and mapping of a locus conferring Plum pox virus resistance in two apricot improved linkage maps. Tree Genet Genomes 4:391–402

    Article  Google Scholar 

  • Soriano JM, Domingo ML, Zuriaga E, Romero C, Zhebentyayeva T, Abbott A, Badenes ML (2012) Identification of simple sequence repeat markers tightly linked to Plum pox virus resistance in apricot. Mol Breed 30:1017–1026

    Article  CAS  Google Scholar 

  • Sutula CL, Gillet JM, Morrissey SM, Ramsdell DC (1986) Interpreting ELISA data and establishing the positive–negative threshold. Plant Dis 70:722–726

    Article  Google Scholar 

  • Syrgiannidis M (1980) Selection of two apricot varieties resistant to sharka virus. Acta Phytopathol Sci Hung 15:85–87

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Vera-Ruiz EM, Soriano JM, Romero C, Zhebentyayeva T, Terol J, Zuriaga E, Llácer G, Abbott AG, Badenes ML (2011) Narrowing down the apricot Plum pox virus resistance locus and comparative analysis with the peach genome. Mol Plant Pathol 12:535–547

    Article  PubMed  Google Scholar 

  • Vilanova S, Romero C, Abbott AG, Llácer G, Badenes ML (2003) An apricot F2 progeny linkage map based on SSR and AFLP markers, mapping PPV resistance and self-incompatibility traits. Theor Appl Genet 107:239–247

    Article  CAS  PubMed  Google Scholar 

  • Zhang QP, Liu DC, Liu S, Liu N, Wei X, Zhang AM, Liu WS (2013) Genetic diversity and relationships of common apricot (Prunus armeniaca L.) in China based on simple sequence repeat (SSR) markers. Genet Resour Crop Evol. doi:10.1007/s10722-013-0039-4

    Google Scholar 

  • Zuriaga E, Soriano JM, Zhebentyayeva T, Romero C, Dardick C, Cañizares J, Badenes ML (2013) Genomic analysis reveals MATH gene(s) as candidate for Plum pox virus (PPV) resistance in apricot (Prunus armeniaca L.). Mol Plant Pathol 13:663–677

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by projects from the Seneca Foundation of the Region of Murcia: “Importance, transmission and resistance sources of the main viruses affecting stone fruits in the Region of Murcia” (08672/PI/08) and from the Spanish Ministry of Economy and Competiveness: “Apricot breeding” (AGL2010-21903) and “Gene expression analysis of the resistance to Plum pox virus, PPV (Sharka) in apricot by transcriptome deep-sequencing (RNA-Seq)” (AGL2010-16335). We wish to thank Dr. Werner Howad from the Centre de Recerca en Agrigenòmica (CRAG) CSIC-IRTA-UAB-UB of Barcelona for the technical help in the SSR analysis and Dr. Véronique Decroocq for the review of the manuscript.

Data archiving statement

The plant material studied is registered in the Plant Variety Database (PLUTO; http://www.upov.int/pluto/en) belonging to the International Union for the Protection of New Varieties of Plants (UPOV) http://www.upov.int. Apricot cultivars and new selections not included in PLUTO belong to the germplasm collection and breeding program of CEBAS-CSIC, which includes some breeding research material in the Genome Database for Rosaceae (GDR, http://www.rosaceae.org). Microsatellites and the partial sequence of Plum pox virus isolate tested are available in the GDR and GenBank AF172346.1 (http://www.ncbi.nlm.nih.gov), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Rubio.

Additional information

Communicated by A. G. Abbott

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubio, M., Ruiz, D., Egea, J. et al. Opportunities of marker-assisted selection for Plum pox virus resistance in apricot breeding programs. Tree Genetics & Genomes 10, 513–525 (2014). https://doi.org/10.1007/s11295-014-0700-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0700-x

Keywords

Navigation