Origins of Japanese flowering cherry (Prunus subgenus Cerasus) cultivars revealed using nuclear SSR markers

Abstract

Japanese flowering cherry (Prunus subgenus Cerasus) cultivars, which are characterized by beautiful flowers, have been developed through hybridization among wild Prunus taxa. The long history of cultivation has caused significant confusion over the origins of these cultivars. We conducted molecular analysis using nuclear simple sequence repeat (SSR) polymorphisms to trace cultivar origins. Bayesian clustering based on the STRUCTURE analysis using SSR genotypes revealed that many cultivars originated from hybridization between two or more wild species. This suggests that morphological variations among flowering cherry cultivars probably arose through a complex sequence of hybridizations. Our findings generally supported estimates of the origins of cultivars based on morphological study, although there were some exceptions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Burger JC, Chapman MA, Burke JM (2008) Molecular insights into the evolution of crop plants. Am J Bot 95:113–122

    PubMed  Article  Google Scholar 

  2. Cavallari MM, Gimenes MA, Billot C, Torres RB, Zucchi MI, Cavalheiro AJ, Bouvet JM (2010) Population genetic relationships between Casearia sylvestris (Salicaceae) varieties occurring sympatrically and allopatrically in different ecosystems in south-east Brazil. Ann Bot 106:627–636

    PubMed Central  PubMed  Article  Google Scholar 

  3. Cipriani G, Lot G, Huang WG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99:65–72

    CAS  Article  Google Scholar 

  4. de Queiroz K, Good DA (1997) Phenetic clustering in biology: a critique. Quart Rev Biol 72:3–31

    Article  Google Scholar 

  5. Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    CAS  PubMed  Article  Google Scholar 

  6. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  7. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Article  Google Scholar 

  8. Felsenstein J (1989) PHYLIP—phylogeny inference package (version 32). Cladistics 5:164–166

    Google Scholar 

  9. Fernández i Marti A, Athanson B, Koepke T, Font i Forcada C, Dhingra A, Oraguzie N (2012) Genetic diversity and relatedness of sweet cherry (Prunus avium L.) cultivars based on single nucleotide polymorphic markers. Front Plant Sci 3:116

    PubMed Central  PubMed  Google Scholar 

  10. Flower Association of Japan (compilers) (1982) Manual of Japanese flowering cherries. Flower Association of Japan, Tokyo

    Google Scholar 

  11. Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  12. Hara H (1950) Engei-daijiten, vol 2. Seibundo Shinkosha, Tokyo, pp 914–934, In Japanese (edited by Ishii Y and Makino T)

    Google Scholar 

  13. Hayashi K, Shimazu K, Yaegaki H, Yamaguchi M, Iketani H, Toshiya Yamamoto T (2008) Genetic diversity in fruiting and flower-ornamental Japanese apricot (Prunus mume) germplasms assessed by SSR markers. Breed Sci 58:401–410

    CAS  Article  Google Scholar 

  14. Iketani H, Ohta S, Kawahara T, Katsuku T, Mase N, Sato Y, Yamamoto T (2007) Analyses of clonal status in ‘Somei-yoshino’ and confirmation of genealogical record in other cultivars of Prunus × yedoensis by microsatellite markers. Breed Sci 57:1–6

    Article  Google Scholar 

  15. Innan H, Terauchi R, Miyashita NT, Tsunewaki K (1995) DNA fingerprinting study on the intraspecific variation and the origin of Prunus yedoensis (Someiyoshino). Jpn J Genet 70:185–196

    CAS  PubMed  Article  Google Scholar 

  16. Iwatsubo Y, Kawasaki T, Naruhashi N (2002) Chromosome numbers of 193 cultivated taxa of Prunus subg. Cerasus in Japan. J Phytogeogr Taxon 50:21–34

    Google Scholar 

  17. Iwatsubo Y, Kawasaki T, Naruhashi N (2003) Chromosome numbers of 41 cultivated taxa of Prunus subg. Cerasus in Japan. J Phytogeogr Taxon 51:165–168

    Google Scholar 

  18. Iwatsubo Y, Sengi Y, Naruhashi N (2004) Chromosome numbers of 36 cultivated taxa of Prunus subg. Cerasus in Japan. J Phytogeogr Taxon 52:73–76

    Google Scholar 

  19. Jaccard P (1908) Nouvelles reserches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  20. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    CAS  PubMed  Article  Google Scholar 

  21. Kato S, Matsumoto A, Yoshimura K, Katsuki T, Iwamoto K, Tsuda Y, Ishio S, Nakamura K, Moriwaki K, Shiroishi T, Gojobori T, Yoshimaru H (2012) Clone identification in Japanese flowering cherry (Prunus subgenus Cerasus) cultivars using nuclear SSR markers. Breed Sci 62:248–255

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Kawasaki T (1991) The distribution of Prunus subgenus Cerasus in East-Asia and classification of Japanese wild species. Sakura Sci 1:28–45 (in Japanese)

    Google Scholar 

  23. Kawasaki T (1993) Flowering cherries of Japan. Yama-kei, Tokyo (In Japanese)

    Google Scholar 

  24. Kobayashi Y (1992) Flowering cherry cultivars. Puranta 20:9–14, Kenseisha Publisher, Tokyo. (In Japanese)

    Google Scholar 

  25. Koidzumi G (1913) Conspectus Rosacearum Japonicarum. J Coll Sci Imp Univ Tokyo 34(Art 2):1–312

    Google Scholar 

  26. Kole C, Abbott AG (2012) Genetics, genomics and breeding of stone fruits. CRC, Boca Raton, 418 pp

    Google Scholar 

  27. Kuitert W (1999) Japanese flowering cherries. Timber, Portland

    Google Scholar 

  28. Maghuly F, Fernandez EB, Ruthner S, Pedryc A, Laimer M (2005) Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genet Genome 1:151–165

    Article  Google Scholar 

  29. Miyoshi M (1916) Japonsche Berkirschen, ihre Wildformen und Kulturrassen. J Coll Sci Imp Univ Tokyo 34(Art. 1):1–175, Pl. I-XXIII

    Google Scholar 

  30. Ogawa T, Kameyama Y, Kanazawa Y, Suzuki K, Somego M (2012) Origins of early-flowering cherry cultivars, Prunus × kanzakura cv. Atami-zakura and Prunus × kanzakura cv. Kawazu-zakura, revealed by experimental crosses and AFLP analysis. Sci Hortic 140:140–148

    CAS  Article  Google Scholar 

  31. Ohba H, Kawasaki T, Tanaka H (2007) Flowering cherries of Japan, Newth edn. Yama-kei, Tokyo (in Japanese)

    Google Scholar 

  32. Ohta S, Katsuki T, Takahisa T, Tateki H, Yo-Ichiro S, Yamamoto T (2005) Genetic variation in flowering cherries (Prunus subgenus Cerasus) characterized by SSR markers. Breed Sci 55:415–424

    CAS  Article  Google Scholar 

  33. Ohta S, Murakami S, Katsuki T, Ishii C, Inaba Z, Yamamoto T (2011) Analysis of flowering cherries (Prunus subgenus Cerasus) in Izu, Japan based on nuclear and chloroplast DNA polymorphisms. Hort Res 10:151–159 (in Japanese)

    CAS  Article  Google Scholar 

  34. Ohwi J (1973) Flowering cherries of Japan. Heibonsha, Tokyo (illustration drawn by Ohta Y)

    Google Scholar 

  35. Pritchard, JK, Wen W, Falush D (2010) Documentation for STRUCTURE software: version 2.3. Available from http://pritch.bsd.uchicago.edu/structure.html

  36. Raymond M, Rousset F (1995) GENEPOP: population genetics software for exact test and ecumenicism. J Hered 86:248–249

    Google Scholar 

  37. Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Mol Ecol Notes 6:569–572

    Article  Google Scholar 

  38. Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach Prunus persica (L.) Batsch. Theor Appl Genet 101:421–428

    CAS  Article  Google Scholar 

  39. Stöck M, Ustinova J, Lamatsch DK, Schartl M, Perrin N, Moritz C (2010) A vertebrate reproductive system involving three ploidy levels: hybrid origin of triploids in a contact zone of diploid and tetraploid palearctic green toads (Bufo viridis subgroup). Evolution 64:944–959

    PubMed  Article  Google Scholar 

  40. Takenaka Y (1963) The origin of the Yoshino cherry tree. J Hered 54:207–211

    Google Scholar 

  41. Tamura J, Iyama S (1989) Idenken no sakura (Flowering cherry cultivars at the National Institution of Genetics). National Institution of Genetics, Mishima (in Japanese)

    Google Scholar 

  42. Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    CAS  PubMed  Article  Google Scholar 

  43. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  44. Wilson EH (1916) The cherries of Japan. The University Press, Cambridge, 68 pp; Publications of the Arnold Arboretum, No. 7

    Google Scholar 

  45. Zeinalabedinia M, Khayam-Nekouia M, Grigorianb V, Gradzielc TM, Martínez-Gómezd P (2010) The origin and dissemination of the cultivated almond as determined by nuclear and chloroplast SSR marker analysis. Sci Hortic 125:593–601

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by research grant #200904 of the Forestry and Forest Products Research Institute and the Grant-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology, Japan, grant number 24380087. We thank members of staff of the Shinjuku Gyoen National Garden for granting us permission to investigate and collect materials. We also thank the editor and anonymous reviewers for their constructive suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuri Kato.

Additional information

Communicated by A. Dandekar

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Population or individual identifier and number of samples collected for thirteen Prunus taxa (PDF 102 kb)

Online Resource 2

Sample details for Prunus campanulata and Prunus pseudocerasus. Samples assigned the same number had the same genotypes, suggesting that they were clonally derived. (PDF 95 kb)

Online Resource 3

Sampling locations for twelve Prunus taxa. The number of samples collected in each location is shown in Online Resource 1. Some samples of P. campanulata and all samples of P. pseudocerasus were collected from the organizations listed in Online Resource 2. (PDF 809 kb)

Online Resource 4

Japanese flowering cherry cultivars investigated in this study. Genotypes with small differences at only one or two loci were distinguished by assigning branch numbers, and formally treated as a single clone. (PDF 209 kb)

Online Resource 5

Inferences, from morphological classification and STRUCTURE analysis, on the origins of Japanese flowering cherry cultivars. The abbreviated names used for P. campanulata, P. pseudocerasus, P. pendula f. ascendens, P. apetala var. apetala, P. apetala var. pilosa, P. incisa var. incisa, P. incisa var. kinkiensis, P. nipponica, P. sargentii, P. verecunda, P. jamasakura, P. lannesiana var. speciosa are cam, pse, pen, ape, ape.pil, inc, inc.kin, nip, sar, ver, jam and lan.spe, respectively. Circle: Prunus taxon believed to influence the cultivar; hyphen: taxon not exerting an influence on the cultivar. The baseline information was obtained from the descriptions in ten scientific papers listed in the Sample Collection section of Kato et al. (2012). The significance of each q value is given by ‡ if the probability interval (PI) > 0.5, † if PI > 0.25 and +if PI > 0, and these values are also shown in boldface. Hyphen: q value less than 0.01. The clusters most probably representing individual taxa are named on the basis of the corresponding taxonomic names, and the cluster names are defined in Table 1. (PDF 318 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kato, S., Matsumoto, A., Yoshimura, K. et al. Origins of Japanese flowering cherry (Prunus subgenus Cerasus) cultivars revealed using nuclear SSR markers. Tree Genetics & Genomes 10, 477–487 (2014). https://doi.org/10.1007/s11295-014-0697-1

Download citation

Keywords

  • Prunus
  • Cerasus
  • Ornamental tree
  • Cultivars
  • SSR
  • Taxonomy