Advertisement

Tree Genetics & Genomes

, Volume 10, Issue 1, pp 111–126 | Cite as

Demography of the upward-shifting temperate woody species of the Rhododendron pseudochrysanthum complex and ecologically relevant adaptive divergence in its trailing edge populations

  • Chia-Ying Chen
  • Bo-Kai Liang
  • Jeng-Der Chung
  • Chung-Te Chang
  • Yi-Chiang Hsieh
  • Teng-Chiu Lin
  • Shih-Ying HwangEmail author
Original Paper

Abstract

Trailing edge populations of upward migrating species induced by postglacial climatic warming can be evolutionarily significant in the face of global warming. We tested for population size changes between lower- and higher-elevation populations located in the same mountainous regions of the upward-shifting temperate woody species of the Rhododendron pseudochrysanthum complex in Taiwan. We also tested whether natural selection evoked adaptive divergence in trailing edge populations of this species complex. We genotyped 26 expressed sequence tag-simple sequence repeat (EST-SSR) loci of 185 individuals from nine populations of the R. pseudochrysanthum complex including Rhododendron rubropunctatum, Rhododendron hyperythrum, Rhododendron morii, and R. pseudochrysanthum. R. rubropunctatum populations in the R. pseudochrysanthum complex possessed the lowest estimates of genetic diversity and effective population size. Higher-elevation R. pseudochrysanthum populations had lower effective population sizes than lower-elevation R. morii populations in Hohuanshan and Tahsueshan, as revealed by estimates using both MIGRATE-N and approximate Bayesian computation (ABC). R. rubropunctatum populations diverged significantly from populations of other members of the R. pseudochrysanthum complex. An outlier potentially under positive selection specific to R. rubropunctatum populations was identified and strongly associated with ecologically relevant environmental variables. Postglacial climatic warming has a significant influence on population isolation in the R. pseudochrysanthum complex. The results indicate adaptive evolution in the trailing edge populations, i.e., R. rubropunctatum populations of the upward shifting R. pseudochrysanthum complex.

Keywords

Climate warming Population isolation Rhododendron Taiwan Trailing edge population Upward range shift 

Notes

Acknowledgments

This work was supported by the National Science Council, Executive Yuan, Taiwan (grant number NSC97-2313-B-003-002-MY3) to SYH. The authors are grateful to Yushan National Park for allowing them to collect plant materials. Funding for a graduate studentship to BKL and YCH and a postdoctoral associateship to CYC and CTC by the National Science Council is also acknowledged.

Data Archiving Statement

EST-SSR genotyping data of this study were deposited at Dryad: http://doi.org/10.5061/dryad.m33cb.

Supplementary material

11295_2013_669_MOESM1_ESM.doc (246 kb)
ESM 1 (DOC 245 kb)

References

  1. Abdo Z, Crandall KA, Joyce P (2004) Evaluating the performance of likelihood methods for detecting population structure and migration. Mol Ecol 13:837–851PubMedCrossRefGoogle Scholar
  2. Ackerly DD (2003) Community assembly, niche conservatism, and adaptive evolution in changing environments. Int J Plant Sci 164:S165–S184CrossRefGoogle Scholar
  3. Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980PubMedCrossRefGoogle Scholar
  4. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lon Ser B Biol Sci 263:1619–1626CrossRefGoogle Scholar
  5. Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035PubMedGoogle Scholar
  6. Bolte S, Schiene K, Dietz KJ (2000) Characterization of a small GTP-binding protein of the rab 5 family in Mesembryanthemum crystallinum with increased level of expression during early salt stress. Plant Mol Biol 42:923–36PubMedCrossRefGoogle Scholar
  7. Booy G, Hendriks RJJ, Smulders MJM, Van Groenendael M, Vosman B (2000) Genetic diversity and the survival of populations. Plant Biol 2:379–395CrossRefGoogle Scholar
  8. Carrera-Hernández JJ, Gaskin SJ (2007) Spatio temporal analysis of daily precipitation and temperature in the basin of Mexico. J Hydrol 336:231–249CrossRefGoogle Scholar
  9. Chung J-D, Lin T-P, Chen Y-L, Cheng Y-B, Hwang S-Y (2007) Phylogeographic study reveals the origin and evolutionary history of a Rhododendron species complex in Taiwan. Mol Phylogent Evol 42:14–24CrossRefGoogle Scholar
  10. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  11. Cornuet J-M, Santos F, Beaumont MA, Robert CP, Marin J-M, Balding DJ, Guillemaud T, Estoup A (2008) Inferring population history with DIYABC: a user-friendly approach to approximate Bayesian computations. Bioinformatics 24:2713–2719PubMedCrossRefGoogle Scholar
  12. Cornuet J-M, Ravigné V, Estoup A (2010) Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinforma 11:401CrossRefGoogle Scholar
  13. Cross JR (1975) Biological flora of the British Isles: Rhododendron ponticum L. J Ecol 63:345–364CrossRefGoogle Scholar
  14. Dieringer D, Schlötterer C (2003) Microsatellite Analyser: a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169CrossRefGoogle Scholar
  15. Dirnböck T, Essl F, Rabitsch W (2011) Disproportional risk for habitat loss of high-altitude endemic species under climate change. Global Change Biol 17:990–996CrossRefGoogle Scholar
  16. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem Bull 19:11–15Google Scholar
  17. Ebine K, Fujimoto M, Okatani Y, Nishiyama T, Goh T, Ito E, Dainobu T, Nishitani A, Uemura T, Sato MH, Thordal-Christensen H, Tsutsumi N, Nakano A, Ueda T (2011) A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6. Nat Cell Biol 13:853–859PubMedCrossRefGoogle Scholar
  18. Ebine K, Miyakawa N, Fujimoto M, Uemura Y, Nakano A, Ueda T (2012) Endosomal trafficking pathway regulated by ARA6, a RAB5 GTPase unique to plants. Small GTPases 3:23–27PubMedCentralPubMedCrossRefGoogle Scholar
  19. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188PubMedCrossRefGoogle Scholar
  20. Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132PubMedCrossRefGoogle Scholar
  21. Escaravage N, Pornon A, Doche B, Till-Bottaraud I (1997) Breeding system in an alpine species Rhododendron ferrugineum L. (Ericaceae) in the French northern Alps. Can J Bot 75:736–743CrossRefGoogle Scholar
  22. Estoup A, Jarne P, Cornuet J-M (2002) Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol 11:1591–1604PubMedCrossRefGoogle Scholar
  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  24. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567CrossRefGoogle Scholar
  25. Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103:285–298PubMedCrossRefGoogle Scholar
  26. Fagundes NJR, Ray N, Beaumont MA (2007) Statistical evaluation of alternative models of human evolution. Proc Natl Acad Sci U S A 104:17614–17619PubMedCentralPubMedCrossRefGoogle Scholar
  27. Frankham R (1995) Inbreeding and extinction - a threshold effect. Conser Biol 9:792–799CrossRefGoogle Scholar
  28. Garcia-Ramos G, Kirkpatrick M (1997) Genetic models of adaptation and gene flow in peripheral populations. Evolution 51:21–28CrossRefGoogle Scholar
  29. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318PubMedCrossRefGoogle Scholar
  30. Gavrilets S, Vose A (2007) Case studies and mathematical models of ecological speciation. 2. Palms on an oceanic island. Mol Ecol 16:2910–2921PubMedCrossRefGoogle Scholar
  31. Girod C, Vitalis R, Leblois R, Fréville H (2011) Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the Msvar method. Genetics 188:165–179PubMedCrossRefGoogle Scholar
  32. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices. Version 2.9.3. http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 11 March 2013
  33. Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372PubMedCrossRefGoogle Scholar
  34. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467PubMedCrossRefGoogle Scholar
  35. Hardy EA, Spaeth PA, Li C (2009) Niche conservatism above the species level. Proc Natl Acad Sci U S A 106:19707–19714CrossRefGoogle Scholar
  36. Herrera C, Bazaga P (2008) Adding a third dimension to the edge of a species’ range: altitude and genetic structuring in mountainous landscapes. Heredity 100:275–285PubMedCrossRefGoogle Scholar
  37. Hirao AS (2010) Kinship between parents reduces offspring fitness in a natural population of Rhododendron brachycarpum. Ann Bot 105:637–646PubMedCrossRefGoogle Scholar
  38. Holderegger R, Herrmann D, Poncet B, Gugerli F, Thuiller W, Taberlet P, Gielly L, Rioux D, Brodbeck S, Aubert S, Manel S (2008) Land ahead: using genome scans to identify molecular markers of adaptive divergence. Plant Ecol Divers 1:273–283CrossRefGoogle Scholar
  39. Holliday JA, Suren H, Aitken SN (2012) Divergent selection and heterogeneous migration rates across the range of Sitka spruce (Picea sitchensis). Proc R Soc B 279:1675–1683PubMedCrossRefGoogle Scholar
  40. Huang C-C, Hung K-H, Hwang C-C, Huang J-C, Lin H-D, Wang W-K, Wu P-Y, Hsu T-W, Chiang T-Y (2011) Genetic population structure of the alpine species Rhododendron pseudochrysanthum sensu lato (Ericaceae) inferred from chloroplast and nuclear DNA. BMC Evol Biol 11:108PubMedCentralPubMedCrossRefGoogle Scholar
  41. Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586CrossRefGoogle Scholar
  42. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806PubMedCrossRefGoogle Scholar
  43. Joost S, Bonin A, Bruford MW, Després L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16:3955–3969PubMedCrossRefGoogle Scholar
  44. Joost S, Kalbermatten M, Bonin A (2008) Spatial analysis method (SAM): a software tool combining molecular and environmental data to identify candidate loci for selection. Mol Ecol Res 8:957–960CrossRefGoogle Scholar
  45. Jump AS, Mátyás C, Peñuelas J (2009) The altitude-for-latitude disparity in range retractions of woody species. Trends Ecol Evol 24:694–701PubMedCrossRefGoogle Scholar
  46. Jump AS, Huang T-J, Chou C-H (2012) Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35:204–210CrossRefGoogle Scholar
  47. Kalinowski ST (2005) HP-Rare: a computer program for performing rarefaction on measures of allelic diversity. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  48. Kameyama Y, Isagi Y, Nakagoshi N (2000) Microsatellite analysis of pollen flow in Rhododendron metternichii var. hondoense. Ecol Res 15:263–269CrossRefGoogle Scholar
  49. Kameyama Y, Isagi Y, Nakagoshi N (2001) Patterns and levels of gene flow in Rhododendron metternichii var. hondoense revealed by microsatellite analysis. Mol Ecol 10:205–216PubMedCrossRefGoogle Scholar
  50. Kane NC, Rieseberg LH (2007) Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower, Helianthus annuus. Genetics 175:1823–1824PubMedCrossRefGoogle Scholar
  51. Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150:1–23PubMedCrossRefGoogle Scholar
  52. Kondo T, Nakagishi N, Isagi Y (2009) Shaping of genetic structure along Pleistocene and modern river systems in the hydrochorous riparian azalea, Rhododendron ripense (Ericaceae). Am J Bot 96:1532–1543PubMedCrossRefGoogle Scholar
  53. Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574PubMedCrossRefGoogle Scholar
  54. Lee C-Y, Liew P-M (2009) Late Quaternary vegetation and climate changes inferred from a pollen record of Dongyuan lake in southern Taiwan. Palaeogeo Palaeoclim Palaeoecol 287:58–66CrossRefGoogle Scholar
  55. Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771PubMedCrossRefGoogle Scholar
  56. Levin DA (2012) Mating system shifts on the trailing edge. Ann Bot 109:613–620PubMedCrossRefGoogle Scholar
  57. Li H-L, Lu S-Y, Yang Y-P, Tseng Y-H (1998) Ericaceae. In: Editorial Committee of the Flora of Taiwan (ed) Flora of Taiwan, vol 4, 2nd edn. Taipei, Taiwan, pp 17–39Google Scholar
  58. Liew P-M, Chung N-J (2001) Vertical migration of forests during the last glacial period in subtropical Taiwan. West Pac Earth Sci 1:405–414Google Scholar
  59. Liew P-M, Kuo C-M, Huang S-Y (1998) Vegetation change and terrestrial carbon storage of eastern Asia during the last glacial maximum as indicated by new pollen records of northern Taiwan. Global Plant Change 16:85–94CrossRefGoogle Scholar
  60. Liew P-M, Huang S-Y, Kuo C-M (2006) Pollen stratigraphy, vegetation and environment of the last glacial and Holocene-A record from Toushe Basin, central Taiwan. Quat Internl 147:16–33CrossRefGoogle Scholar
  61. Mäkinen HS, Shikano T, Cano JM, Merilä J (2008) Hitchhiking mapping reveals a candidate genomic region for natural selection in three-spined Stickleback chromosome VIII. Genetics 178:453–465PubMedCrossRefGoogle Scholar
  62. Marriage TN, Hudman S, Mort ME, Orive ME, Shaw RG, Kelly JK (2009) Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae). Heredity 103:310–317PubMedCentralPubMedCrossRefGoogle Scholar
  63. Marshall DL, Avritt JJ, Maliakal-Witt S, Medeiros JS, Shaner MGM (2010) The impact of plant and flower age on mating patterns. Ann Bot 105:7–22PubMedCrossRefGoogle Scholar
  64. Nosil P, Egan SP, Funk DJ (2008) Heterogeneous genomic differentiation between walking-stick ecotypes: ‘isolation by adaptation’ and multiple roles for divergent selection. Evolution 62:316–336PubMedCrossRefGoogle Scholar
  65. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155PubMedCrossRefGoogle Scholar
  66. Ohsawa T, Ide Y (2008) Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Global Ecol Biogeogr 17:152–163CrossRefGoogle Scholar
  67. Ono A, Dohzono I, Sugawara T (2008) Bumblebee pollination and reproductive biology of Rhododendron semibarbatum (Ericaceae). J Plant Res 121:319–327PubMedCrossRefGoogle Scholar
  68. Parisod C, Joost S (2010) Divergent selection in trailing- versus leading-edge populations of Biscutella laevigata. Ann Bot 105:655–660PubMedCrossRefGoogle Scholar
  69. Pascual M, Chapuis MP, Mestres F, Balanyá J, Huey RB, Gilchrist GW, Serra L, Estoup A (2007) Introduction history of Drosophila subobscura in the New World: a microsatellite based survey using ABC methods. Mol Ecol 16:3069–3083PubMedCrossRefGoogle Scholar
  70. Pearson G, Lago-Leston A, Mota C (2009) Frayed at the edges: selective pressure and adaptive response to abiotic stressors are mismatched in low diversity edge populations. J Ecol 97:450–462CrossRefGoogle Scholar
  71. Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S, Vásquez-Carrillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418PubMedCrossRefGoogle Scholar
  72. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  73. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  74. Quiroga MP, Premoli AC (2007) Genetic patterns in Podocarpus parlatorei reveal the long-term persistence of cold-tolerant elements in the southern Yungas. J Biogeogr 34:447–455CrossRefGoogle Scholar
  75. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci U S A 94:9197–9201PubMedCentralPubMedCrossRefGoogle Scholar
  76. Raymond M, Rousset F (1995) Genepop (version 1.2): Population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  77. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  78. Savolainen O, Kujala ST, Sokol C, Pyhäjärvi T, Avia K, Knürr T, Kärkkäinen K, Hicks S (2011) Adaptive potential of northernmost tree populations to climate change, with emphasis on Scots pine (Pinus sylvestris L.). J Hered 102:526–536PubMedCrossRefGoogle Scholar
  79. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, OxfordGoogle Scholar
  80. Thuiller E, Albert C, Araujo M, Berry P, Cabeza M, Guisan A, Hickler T, Midgley G, Paterson J, Schurr F (2008) Predicting global change impacts on plant species’ distributions: Future challenges. Pers Plant Ecol Evol System 9:137–152CrossRefGoogle Scholar
  81. Tsukada M (1966) Late Pleistocene vegetation and climate in Taiwan (Formosa). Proc Natl Acad Sci U S A 55:543–548PubMedCentralPubMedCrossRefGoogle Scholar
  82. Van Oosterhout C, Hutchinson WF, Wills DPM, Peter S (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  83. Vernoud V, Horton AC, Yang ZB, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191–1208PubMedCentralPubMedCrossRefGoogle Scholar
  84. Vitalis R, Dawson K, Boursot P (2001) Interpretation of variation across marker loci as evidence of selection. Genetics 158:1811–1823PubMedGoogle Scholar
  85. Vitalis R, Dawson K, Boursot P, Belkhir K (2003) DetSel 1.0: A computer program to detect markers responding to selection. J Hered 94:429–431PubMedCrossRefGoogle Scholar
  86. Wiens J, Graham C (2005) Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539CrossRefGoogle Scholar
  87. Woollard AD, Moore I (2008) The functions of Rab GTPases in plant membrane traffic. Curr Opin Plant Biol 11:1–10CrossRefGoogle Scholar
  88. Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ, Guo Y (2009) Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol 149:916–928PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chia-Ying Chen
    • 1
  • Bo-Kai Liang
    • 1
  • Jeng-Der Chung
    • 2
  • Chung-Te Chang
    • 1
  • Yi-Chiang Hsieh
    • 1
  • Teng-Chiu Lin
    • 1
  • Shih-Ying Hwang
    • 1
    Email author
  1. 1.Department of Life ScienceNational Taiwan Normal UniversityTaipeiRepublic of China
  2. 2.Division of SilvicultureTaiwan Forestry Research InstituteTaipeiRepublic of China

Personalised recommendations