Skip to main content

Jatropha curcas L. (Euphorbiaceae) exhibits a mixed mating system, high correlated mating and apomixis

Abstract

The hierarchical mating system among and within fruits of Jatropha curcas was investigated in a base population using five microsatellite loci, employing mixed mating and correlated mating models. Open-pollinated fruits were collected from 15 randomly selected seed trees, sampling seven fruits per tree for a total of 21 seeds from each tree. We detected multilocus genotypes identical to the mother tree in 13 % of offspring, implying the occurrence of apomixis in J. curcas. The presumed apomictic individuals were excluded from the analysis of the remaining results. Evidence of substantial selfing was provided by the average multilocus outcrossing rate (t m = 0.683), showing that the species exhibits a mixed mating system. The outcrossing rate showed a large variation among seed trees, ranging from 0.21 to 1.0, indicating that the species is not self-incompatible. Significant differences were detected between the multilocus and the single locus outcrossing rates (t m − t s = 0.347) that suggested mating among related individuals, possibly because of the presence of individuals from the same progeny (sibs) in the base population. The multilocus paternity correlation was extremely high for the population (r p(m) = 0.999), indicating that the progenies were manly composed of full-sibs. As a consequence of selfing and a high paternity correlation, the co-ancestry coefficient within the progeny was higher (Θ = 0.369) than expected for panmictic populations. Our results indicated that J. curcas produces seeds asexually by apomixis and sexually by a mixed mating system, combining selfing and outcrossing.

This is a preview of subscription content, access via your institution.

References

  • Abdelgadir HA, Johnson SD, Van Staden J (2008) Approaches to improve seed production of Jatropha curcas L. S Afr J Bot 74:359

    Article  Google Scholar 

  • Alves RM, Sebbenn AM, Artero AS, Clement C, Figueira A (2003) Mating system in natural population of Theobroma grandiflorum (Willd ex Spreng) Shumm. Genet Mol Biol 26:373–379

    Article  Google Scholar 

  • Alves RM, Sebbenn AM, Artero AS, Clement C, Figueira A (2007) High levels of genetic divergence and inbreeding in populations of cupuassu (Theobroma grandiflorum). Tree Genet Genomes 3:289–298

    Article  Google Scholar 

  • Bajay MM, Zucchi MI, Kiihl TAM, Batista CEA, Monteiro M, Pinheiro JB (2011) Development of a novel set of microsatellite markers for castor bean, Ricinus communis (Euphorbiaceae). Am J Bot 98:e87–89

    PubMed  Article  Google Scholar 

  • Basha SD, Sujatha M (2007) Inter and intra-population variability Jatropha curcas characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156:375–386

    Article  CAS  Google Scholar 

  • Basha SD, Francis G, Makkar HPS, Becker K, Sujatha M (2009) A comparative study of biochemical traits and molecular markers for assessment of genetic relationships between Jatropha curcas L. germplasm from different countries. Plant Sci 176:812–823

    Article  CAS  Google Scholar 

  • Bhattacharya A, Datta K, Datta SK (2005) Floral biology, floral resource constraints and pollination limitation in Jatropha curcas L. Pak J Biol Sci 8:456–460

    Article  Google Scholar 

  • Bicknell RA, Koltunow AM (2004) Understanding apomixes: recent advances and remaining conundrums. Plant Cell 16:s228–s245

    PubMed  Article  CAS  Google Scholar 

  • Bressan EA, Scotton DC, Ferreira RR, Jorge EC, Sebbenn AM, Lee TSG, Figueira A (2012) Development of microsatellite primers for Jatropha curcas (Euphorbiaceae) and transferability to congeners. Am J Bot 99:e237–239

    Article  Google Scholar 

  • Chang-Wei L, Kun L, You C, Young-YU S (2007) Floral display and breeding system of Jatropha curcas L. Forest Stud China 10:114–119

    Google Scholar 

  • Creste S, Tulmann-Neto A, Figueira A (2001) Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Rep 19:299–306

    Article  CAS  Google Scholar 

  • Divakara BN, Upadhyaya HD, Wani SP, Laxmipathi-Gowda CL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87:732–742

    Article  CAS  Google Scholar 

  • Fairless D (2007) The little shrub that could—maybe. Nature 449:652–655

    PubMed  Article  Google Scholar 

  • Furlani LCM, Moraes CMB, Moraes MLT, Paiva JR, Sebbenn AM (2005) Mating system in a Hevea brasiliensis population by isozymes loci. Crop Breed Appl Biotechnol 5:402–409

    CAS  Google Scholar 

  • Gaiotto FA, Gratapaglia D, Vencovsky R (2003) Genetic structure, mating system, and long-distance gene flow in heart of palm (Euterpe edulis Mar.). J Hered 94:399–406

    PubMed  Article  CAS  Google Scholar 

  • Gillet E, Hattemer HH (1989) Genetic analysis of isoenzyme phenotypes using single tree progenies. Heredity 63:135–141

    Article  Google Scholar 

  • Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Ann Rev Ecol Evolut Syst 36:47–79

    Article  Google Scholar 

  • Goudet J (1995) Fstat (Version 2.9.3.2.): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Hamrick JL, Godt JW (1989) Allozyme diversity on plant species. In: Brown AHD, Clegg MJ, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer Associates, Sunderland, pp 43–63

    Google Scholar 

  • Hamrick JL, Loveless MD (1986) Isozyme variation in tropical trees; procedures and preliminary results. Biotropica 8:201–207

    Article  Google Scholar 

  • Heller J (1996) Physic nut, Jatropha curcas L.: promoting the conservation and use of underutilized and neglected crops. International Plant Genetic Resource Institute, Rome

    Google Scholar 

  • Juhász ACP, Pimenta S, Soares BO, Morais DLB, Rabello HO (2009) Biologia floral e polinização artificial de pinhão manso no norte de Minas Gerais. Pesqui Agropecu Bras 44:1073–1077

    Article  Google Scholar 

  • Kant P, Wu S (2011) The extraordinary collapse of Jatropha as a Global biofuel. Environ Sci Technol 45:7114–7115

    PubMed  Article  CAS  Google Scholar 

  • Luo CW, Huang ZY, Chen XM, Li K, Chen Y, Sun YY (2011) Contribution of diurnal and nocturnal insects to the pollination of Jatropha curcas (Euphorbiaceae) in southwestern China. J Econ Entomol 104:149–154

    PubMed  Article  Google Scholar 

  • Nassar NMA, Vieira MA, Vieira C, Grattapaglia D (1998) A molecular and embryonic study of apomixis in cassava (Manihot esculenta Crantz). Euphytica 102:9–13

    Article  CAS  Google Scholar 

  • Raju AJS, Ezradanam V (2002) Pollination ecology and fruiting behaviour in a monoecious species, Jatropha curcas L. (Euphorbiaceae). Curr Sci 83:1395–1398

    Google Scholar 

  • Ritland K (1989) Correlated matings in the partial selfer Mimulus guttatus. Evolution 43:848–859

    Article  Google Scholar 

  • Ritland K (2002) Estimation of gene frequency and heterozygosity from pooled samples. Mol Ecol Notes 78:370–372

    Article  Google Scholar 

  • Ritland K, Jain S (1981) A model for the estimation of outcrossing rate and gene frequencies using independent loci. Heredity 47:35–52

    Article  Google Scholar 

  • Rosado TB, Laviola BG, Faria DA, Pappas MR, Bhering LL, Quirino B, Grattapaglia D (2010) Molecular markers reveal limited genetic diversity in a large germplasm collection of the biofuel crop Jatropha curcas L. in Brazil. Crop Sci 50:2372–2382

    Article  CAS  Google Scholar 

  • Santos MJ, Machado IC, Lopes AV (2005) Biologia reprodutiva de duas espécies de Jatropha L. (Euphorbiaceae) em caatinga, Nordeste do Brasil. Rev Bras Bot 28:361–373

    Article  Google Scholar 

  • Sereno ML, Albuquerque PSB, Vencovsky R, Figueira A (2006) Genetic diversity and natural population structure of cacao (Theobroma cacao L.) from the Brazilian Amazon evaluated for microsatellite markers. Conserv Genet 7:13–24

    Article  CAS  Google Scholar 

  • Shaw DV, Kahler AL, Allard RW (1981) A multilocus estimator of mating system parameters in plant populations. Proc Natl Acad Sci 8:1298–1302

    Article  Google Scholar 

  • Silva RM, Bandel G, Martins PS (2003) Mating system in an experimental garden composed of cassava (Manihot esculenta Crantz) ethnovarieties. Euphytica 134:127

    Article  Google Scholar 

  • Silva CRS, Albuquerque PSB, Ervedosa FR, Mota JWS, Figueira A, Sebbenn AM (2011) Understanding the genetic diversity, spatial genetic structure and mating system at the hierarchical levels of fruits and individuals of a continuous Theobroma cacao population from the Brazilian. Heredity 106:973–985

    PubMed  Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research. Freeman, New York

    Google Scholar 

  • Sorensen FC, White TL (1988) Effect of natural inbreeding on variance structure in tests of wind-pollination Douglas-Fir progenies. For Sci 34:102–118

    Google Scholar 

  • Sudheer Pamidimarri DVNS, Mastan SG, Rahman H, Reddy MP (2010) Molecular characterization and genetic diversity analysis of Jatropha curcas L. in India using RAPD and AFLP analysis. Mol Biol Rep 37:2249–2257

    Article  Google Scholar 

  • Sun M, Ritland K (1998) Mating system of yellow starthistle (Centaurea solstitialis), a successful colonizer in North America. Heredity 80:225–232

    Article  Google Scholar 

  • Sun QB, Li LF, Wu GJ, Ge XJ (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865–1870

    Article  CAS  Google Scholar 

  • Tanya P, Dachapac S, Tar MM, Srinives P (2011) A new microsatellite markers classifying nontoxic and toxic Jatropha curcas. J Genet 90:e76–e78

    PubMed  Google Scholar 

  • Yi C, Zhang S, Liu X, Bui HTN, Hong Y (2010) Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.? BMC Plant Biol 10:259

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by ‘Fundação de Amparo à Pesquisa do Estado de São Paulo’ (FAPESP 2007/04840-2) and ‘Biocapital Consultoria Empresarial e Participações S.A.’; Alexandre M. Sebbenn, Antonio Figueira and Renato R. Ferreira were recipients of CNPq fellowships.

Conflict of interest

The authors declare no conflict of interest.

Data archiving

All microsatellite locus and primer sequences used in this study have been deposited at GenBank: accession numbers GF111555, GF111558, GF111560, GF111561 and GF111562.

Genotyping data has been deposited at TreeGenes Data Repository accession TGDR005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Figueira.

Additional information

Communicated by M. Byrne

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1

(DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bressan, E.A., Sebbenn, A.M., Ferreira, R.R. et al. Jatropha curcas L. (Euphorbiaceae) exhibits a mixed mating system, high correlated mating and apomixis. Tree Genetics & Genomes 9, 1089–1097 (2013). https://doi.org/10.1007/s11295-013-0623-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-013-0623-y

Keywords

  • Effective population size
  • Mating system analysis
  • Microsatellite loci
  • Tropical tree