Tree Genetics & Genomes

, Volume 9, Issue 4, pp 1051–1063 | Cite as

Class 1 non-symbiotic and class 3 truncated hemoglobin-like genes are differentially expressed in stone fruit rootstocks (Prunus L.) with different degrees of tolerance to root hypoxia

  • Rubén AlmadaEmail author
  • María José Arismendi
  • Paula Pimentel
  • Pamela Rojas
  • Patricio Hinrichsen
  • Manuel Pinto
  • Boris Sagredo
Original Paper


Root hypoxia produced by flooding or over-irrigation limits stone fruit tree development, particularly in orchards established on soils with restricted drainage. To overcome this problem, stone fruit trees are usually grafted on rootstocks (species or hybrid of the Prunus L. genus) with different degrees of tolerance to root hypoxia. However, the molecular base of such variability is largely unknown. In Arabidopsis thaliana (Heynh.), as well as in a number of crops and tree species, hemoglobin (Hb)-like genes stand out among hypoxia-related genes, but no such studies have been done with the Prunus species used as rootstocks. In this study, we analyzed the expression pattern of class 1 non-symbiotic Hb-like (nsHb) and class 3 truncated Hb-like (trHb) genes in Prunus rootstock roots with different responses to this stress. We observed that the putative Prunus nsHb and trHb genes were induced by root hypoxia in all analyzed Prunus genotypes, independently of their tolerance to hypoxia. However, Prunus nsHb and trHb genes had higher expression levels in roots of tolerant rootstocks. Prunus nsHb and trHb genes were also regulated by other abiotic stresses, such as salt stress and low temperatures. Our results suggest that changes in nsHb and trHb expressions could be part of the adaptive mechanisms that have evolved in the Prunus species to survive under hypoxia or other types of environmental stress that commonly challenge stone fruit tree orchards.


Hemoglobin Prunus Rootstocks Root hypoxia Waterlogging 



This work was funded by grants from CONICYT Regional/CEAF/R08I1001 and FONDECYT Project 11110079. R.A. and P.P. were supported by grants from CONICYT (Project no. 79095006). M.J.A. was supported by CONICYT fellowships (AT-24100126 and 21080351). Rootstock plants were kindly provided by Agromillora Sur S.A.

Data archiving statement

The nucleotide sequences reported in this paper have been deposited in the GenBank database under the following accession numbers: JX966474 (Pc × Pm nsHb1), JX966475 (Pa nsHb1), and JX966476 (Pc × Pm trHb1).

Supplementary material

11295_2013_618_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 17 kb)


  1. Amador ML, Sancho S, Rubio-Cabetas MJ (2009) Biochemical and molecular aspects involved in waterlogging tolerance in Prunus rootstocks. Acta Hort 814:715–720Google Scholar
  2. Amador ML, Sancho S, Bielsa B, Gomez-Aparisi J, Rubio-Cabetas MJ (2012) Physiological and biochemical parameters controlling waterlogging stress tolerance in Prunus before and after drainage. Physiol Plant 144:657–668. doi: 10.1111/j.1399–3054.2012.01568 CrossRefGoogle Scholar
  3. Appleby CA (1992) The origin and functions of haemoglobin in plants. Sci Progr 76:365–398Google Scholar
  4. Bailey-Serres J, Voesenek LA (2008) Flooding stress: acclimations and genetic diversity. Ann Rev Plant Biol 59:313–339CrossRefGoogle Scholar
  5. Bustos-Sanmamed P, Tovar-Méndez A, Crespi M, Sato S, Tabata S, Becana M (2011) Regulation of nonsymbiotic and truncated hemoglobin genes of Lotus japonicus in plant organs and in response to nitric oxide and hormones. New Phytol 189:765–776PubMedCrossRefGoogle Scholar
  6. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116CrossRefGoogle Scholar
  7. Christianson JA, Llewellyn DJ, Dennis ES, Wilson I (2010) Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.). Plant Cell Physiol 51:21–37PubMedCrossRefGoogle Scholar
  8. Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611PubMedCrossRefGoogle Scholar
  9. de Ollas C, Hernando B, Vicent Arbona V, Gómez-Cadenas A (2012) Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. Physiol Plant 147:296–306. doi: 10.1111/j.1399-3054.2012.01659.x PubMedCrossRefGoogle Scholar
  10. Dickerson RE, Geis I (1983) Hemoglobin: structure, function, evolution and pathology. Benjamin-Cummings, Menlo ParkGoogle Scholar
  11. Domingo R, Pérez-Pastor A, Ruiz-Sánchez MC (2002) Physiological responses of apricot plants grafted on two different rootstocks to flooding conditions. J Plant Physiol 159:725–732CrossRefGoogle Scholar
  12. Dordas C (2009) Nonsymbiotic hemoglobins and stress tolerance in plants. Plant Sci 176:433–440CrossRefGoogle Scholar
  13. Garrocho-Villegas V, Bustos-Rivera G, Gough J, Vinogradov SN, Arredondo-Peter R (2008) Expression and in silico structural analysis of a rice (Oryza sativa) hemoglobin 5. Plant Physiol Biochem 46:855–859PubMedCrossRefGoogle Scholar
  14. Gupta KJ, Igamberdiev AU (2011) The anoxic plant mitochondrion as nitrite: NO reductase. Mitochondrion 11:537–543PubMedCrossRefGoogle Scholar
  15. Hill RD (2012) Non-symbiotic haemoglobins—what's happening beyond nitric oxide scavenging? AoB PLANTS: pls004. doi: 10.1093/aobpla/pls004 Google Scholar
  16. Horchani F, Philippe Gallusci P, Pierre Baldet P, Cabasson C, Maucourt M, Rolin D, Raymond P, Aschi-Smiti S (2008) Prolonged root hypoxia induces ammonium accumulation and decreases the nutritional quality of tomato fruits. J Plant Physiol 165:1352–1359PubMedCrossRefGoogle Scholar
  17. Hunt PW, Klok EJ, Trevaskis B, Watts RA, Ellis MH, Peacock WJ, Dennis ES (2002) Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proc Natl Acad Sci USA 99:17197–17202PubMedCrossRefGoogle Scholar
  18. Igamberdiev AU, Baron K, Manac'h-Little N, Stoimenova M, Hill RD (2005) The haemoglobin/nitric oxide cycle: involvement in flooding stress and effects on hormone signalling. Ann Bot 96:557–564PubMedCrossRefGoogle Scholar
  19. Isaakidis A, Sotiropoulos T, Almaliotis D, Therios I, Stylianidis D (2004) Response to severe water stress of the almond (Prunus amygdalus) ‘Ferragnès’ grafted on eight rootstocks. New Zealand J Crop Hort Sci 32:355–362CrossRefGoogle Scholar
  20. Kennedy RA, Rumpho ME, Fox TC (1992) Anaerobic metabolism in plants. Plant Physiol 100:1–6PubMedCrossRefGoogle Scholar
  21. Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monog 1:1–29Google Scholar
  22. Kreuzwieser J, Hauberg J, Howell KA, Carroll A, Rennenberg H, Millar AH et al (2009) Differential response of gray poplar leaves and roots underpins stress adaptation during hypoxia. Plant Physiol 149:461–473PubMedCrossRefGoogle Scholar
  23. Lira-Ruan V, Sarath G, Klucas RV, Arredondo-Peter R (2001) Synthesis of hemoglobins in rice (Oryza sativa var. Jackson) plants growing in normal and stress conditions. Plant Sci 161:279–287PubMedCrossRefGoogle Scholar
  24. Mizutami F, Yamada M, Tomana T (1982) Differential water tolerance and ethanol accumulation in Prunus species under flooded conditions. J Jpn Soc Hort Sci 51:29–34CrossRefGoogle Scholar
  25. Narsai R, Rocha M, Geigenberger P, Whelan J, van Dongen JT (2011) Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. New Phytol 190:472–487PubMedCrossRefGoogle Scholar
  26. Nicolás E, Torrecillas A, Dell'Amico J, Alarcón JJ (2005) The effect of short-term flooding on the sap flow, gas exchange and hydraulic conductivity of young apricot trees. Trees 19:51–57CrossRefGoogle Scholar
  27. Niemann J, Tisa LS (2008) Nitric oxide and oxygen regulate truncated hemoglobin gene expression in Frankia strain CcI3. J Bacteriol 190:7864–7867CrossRefGoogle Scholar
  28. Ota M, Isogay Y, Nishikawa K (1997) Structural requirement of highly-conserved residues in globins. FEBS Lett 415:129–133CrossRefGoogle Scholar
  29. Parent C, Berger A, Folzer H, Dat J, Crevècoeur M, Badot PM, Capelli N (2008) A novel nonsymbiotic hemoglobin from oak: cellular and tissue specificity of gene expression. New Phytol 177(1):142–154PubMedGoogle Scholar
  30. Parent C, Crèvecoeur M, Capelli N, Dat JF (2011) Contrasting growth and adaptive responses of two oak species to flooding stress: role of non-symbiotic haemoglobin. Plant Cell Environ 34:1113–1126PubMedCrossRefGoogle Scholar
  31. Pinochet J (2010) Replantac (Rootpac R), a plum-almond hybrid rootstock for replant situations. HortSci 45:299–301Google Scholar
  32. Pistelli L, Iacona C, Miano D, Cirilli M, Colao MC, Mensuali-Sodi A, Muleo R (2012) Novel Prunus rootstock somaclonal variants with divergent ability to tolerate waterlogging. Tree Physiol 32(3):355–368PubMedCrossRefGoogle Scholar
  33. Ranney TG (1994) Differential tolerance of eleven Prunus taxa to root zone flooding. J Environ Hortic 12:138–141Google Scholar
  34. Ranney TG, Bassuk NL, Withlow TH (1991) Influence of rootstock, scion, and water deficits on growth of Colt and Meteor cherry trees. HortSci 26:1204–1207Google Scholar
  35. Rubio-Cabetas MJ, Amador ML, Gómez-Aparisi J, Jaime J, Sancho S (2011) Physiological and biochemical parameters involved in waterlogging stress in Prunus. Acta Hort 903:1215–1224Google Scholar
  36. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  37. Sánchez C, Cabrera JJ, Gates AJ, Bedmar EJ, Richardson DJ, Delgado MJ (2011) Nitric oxide detoxification in the rhizobia–legume symbiosis. Biochem Soc Trans 39:184–188CrossRefGoogle Scholar
  38. Sasakura F, Uchiumi T, Shimoda Y, Suzuki A, Takenouchi K, Higashi S, Abe M (2006) A class 1 hemoglobin gene from Alnus firma functions in symbiotic and nonsymbiotic tissues to detoxify nitric oxide. MPMI 19:441–450PubMedCrossRefGoogle Scholar
  39. Sekse L (1995) Cuticular fracturing in fruits sweet cherry (Prunus avium L.) resulting from chancing soil water contents. J Hort Sci 70(4):631–635Google Scholar
  40. Sekse L (1998) Fruit cracking mechanism in sweet cherries (Prunus avium L.). Rev Acta Hort 468:637–648Google Scholar
  41. Shi X, Wang X, Peng F, Zhao Y (2012) Molecular cloning and characterization of a nonsymbiotic hemoglobin gene (GLB1) from Malus hupehensis Rehd. with heterologous expression in tomato. Mol Biol Rep 39:8075–8082. doi: 10.10007/s11033-012-1654-4 PubMedCrossRefGoogle Scholar
  42. Shimoda Y, Nagata M, Suzuki A, Abe M, Sato S, Kato T, Tabata S, Higashi S, Uchiumi T (2005) Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol 46:99–107PubMedCrossRefGoogle Scholar
  43. Sowa AW, Duff SMG, Guy PA, Hill RD (1998) Altering hemoglobin levels changes energy status in maize cells under hypoxia. Proc Natl Acad Sci USA 95:10317–10321PubMedCrossRefGoogle Scholar
  44. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  45. Taylor ER, Nie XZ, MacGregor AW, Hill RD (1994) A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Mol Biol 24:853–862PubMedCrossRefGoogle Scholar
  46. Tong Z, Gao Z, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71PubMedCrossRefGoogle Scholar
  47. Trevaskis B, Watts RA, Andersson CR, Llewellyn DJ, Hargrove MS, Olson SO, Dennis ES, Peacock WJ (1997) Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc Natl Acad Sci USA 94:12230–12234PubMedCrossRefGoogle Scholar
  48. Vázquez-Limón C, Hoogewijs D, Vinogradov SN, Arredondo-Peter R (2012) The evolution of land plant hemoglobins. Plant Sci 191–192:71–81PubMedCrossRefGoogle Scholar
  49. Vieweg MF, Hohnjec N, Küster H (2005) Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses of Medicago truncatula. Planta 220:757–766PubMedCrossRefGoogle Scholar
  50. Vigeolas H, Hühn D, Geigenberger P (2011) Non-symbiotic hemoglobin-2 leads to an elevated energy state and to a combined increase in polyunsaturated fatty acids and total oil content when over-expressed in developing seeds of transgenic Arabidopsis plants. Plant Physiol 155:1435–1444PubMedCrossRefGoogle Scholar
  51. Wang Y, Elhiti M, Hebelstrup KH, Hill RD, Stasolla C (2011) Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis. Plant Physiol Biochem 49:1108–1116PubMedCrossRefGoogle Scholar
  52. Webster AD (2005) The origin, distribution and genetic diversity of temperate tree fruits. In: Tromp J, Webster AD, Wertheim SJ (eds) Fundamentals of temperate zone tree fruit production. Backhuys Publishers, Leiden, pp 1–11Google Scholar
  53. Wittenberg JB, Martino Bolognesi M, Beatrice A, Wittenberg BA, Michel Guertin M (2002) Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J Biol Chem 277:871–874PubMedCrossRefGoogle Scholar
  54. Zhao L, Riliang Gm Gao P, Wang G (2008) A nonsymbiotic hemoglobin gene from maize, ZmHb, is involved in response to submergence, high-salt and osmotic stresses. Plant Cell Tissue Organ Cult 95:227–237CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rubén Almada
    • 1
    Email author
  • María José Arismendi
    • 1
    • 2
  • Paula Pimentel
    • 1
  • Pamela Rojas
    • 1
  • Patricio Hinrichsen
    • 1
    • 3
  • Manuel Pinto
    • 1
    • 3
  • Boris Sagredo
    • 1
  1. 1.Centro de Estudios Avanzados en Fruticultura (CEAF)Instituto de Investigaciones Agropecuarias (INIA) CRI RayentueRengoChile
  2. 2.Programa Doctorado en Cs. Mc. Biología Celular y Molecular Aplicada, Facultad de Ciencias Agropecuarias y ForestalesUniversidad de La FronteraTemucoChile
  3. 3.INIA CRI La PlatinaSantiagoChile

Personalised recommendations