Tree Genetics & Genomes

, Volume 9, Issue 4, pp 901–911 | Cite as

Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate

  • V. L. Sork
  • S. N. Aitken
  • R. J. Dyer
  • A. J. Eckert
  • P. Legendre
  • D. B. Neale
Opinion Paper


The Forest ecosystem genomics Research: supporTing Transatlantic Cooperation project (FoResTTraC, sponsored a workshop in August 2010 to evaluate the potential for using a landscape genomics approach for studying plant adaptation to the environment and the potential of local populations for coping with changing climate. This paper summarizes our discussions and articulates a vision of how we believe forest trees offer an unparalleled opportunity to address fundamental biological questions, as well as how the application of landscape genomic methods complement to traditional forest genetic approaches that provide critical information needed for natural resource management. In this paper, we will cover four topics. First, we begin by defining landscape genomics and briefly reviewing the unique situation for tree species in the application of this approach toward understanding plant adaptation to the environment. Second, we review traditional approaches in forest genetics for studying local adaptation and identifying loci underlying locally adapted phenotypes. Third, we present existing and emerging methods available for landscape genomic analyses. Finally, we briefly touch on how these approaches can aid in understanding practical topics such as management of tree populations facing climate change.


Adaptive genetic variation Climate change Environmental association Forest genetics Genomics Landscape genetics 


  1. Aitken SN, Yeaman S, Holliday JA, Wang TL, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1(1):95–111CrossRefGoogle Scholar
  2. Anderson JT, Willis JH, Mitchell-Olds T (2011) Evolutionary genetics of plant adaptation. Trends in Genetics 27(7):258–266PubMedCrossRefGoogle Scholar
  3. Atwell S, Huang YS, Vilhjalmsson BJ et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465(7298):627–631. doi: 10.1038/nature08800 PubMedCrossRefGoogle Scholar
  4. Balkenhol N, Gugerli F, Cushman SA, Waits LP, Coulon A, Arntzen JW, Holderegger R, Wagner HH (2009a) Identifying future research needs in landscape genetics: where to from here? Landsc Ecol 24(4):455–463CrossRefGoogle Scholar
  5. Balkenhol N, Waits LP, Dezzani RJ (2009b) Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32(5):818–830CrossRefGoogle Scholar
  6. Barrett RDH, Hoekstra HE (2011) Molecular spandrels: tests of adaptation at the genetic level. Nat Rev Genet 12(1):767–780PubMedCrossRefGoogle Scholar
  7. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc London, Ser B 263(1377):1619–1626CrossRefGoogle Scholar
  8. Bergelson J, Roux F (2010) Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana. Nat Rev Genet 11(12):867–879. doi: 10.1038/nrg2896 PubMedCrossRefGoogle Scholar
  9. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89(9):2623–2632. doi: 10.1890/07-0986.1 PubMedCrossRefGoogle Scholar
  10. Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P (2007) Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol 21(3):697–708. doi: 10.1111/j.1523-1739.2007.00685 PubMedCrossRefGoogle Scholar
  11. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153(1–2):51–68. doi: 10.1016/s0304-3800(01)00501-4 CrossRefGoogle Scholar
  12. Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85(7):1826–1832. doi: 10.1890/03-3111 CrossRefGoogle Scholar
  13. Boutet I, Tanguy A, Guen DL, Piccino P, Hourdez S, Legendre P, Jollivet D (2009) Global depression in gene expression as a response to rapid thermal changes in vent mussels. Proceedings of the Royal Society B-Biological Sciences 276:3071–3079CrossRefGoogle Scholar
  14. Bradshaw AD (1972) Some of the evolutionary consequences of being a plant. Evol Biol 5:25–47CrossRefGoogle Scholar
  15. Brunner AM, Busov VB, Strauss SH (2004) Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends Plant Sci 9(1):49–56. doi: 10.1016/j.plant.2003.11.006 PubMedCrossRefGoogle Scholar
  16. Campbell RK (1979) Genecology of Douglas-fir in a watershed in the Oregon Cascades. Ecology 60(5):1036–1050CrossRefGoogle Scholar
  17. Chen J, Kallman XM, Gyllenstrand N, Zaina G, Morgante M, Bousquet J, Eckert A, Wegrzyn J, Neale D, Lagercrantz U, Lascoux M (2012) Disentangling the roles of history and local selection in shaping clinal variation of allele frequencies and gene expression in Norway spruce (Picea abies). Genetics 191:865–881PubMedCrossRefGoogle Scholar
  18. Coop G, Witonsky D, Di Rienzo A, Pritchard JK (2010) Using environmental correlations to identify loci underlying local adaptation. Genetics 185(4):1411–1423. doi: 10.1534/genetics.110.114819 PubMedCrossRefGoogle Scholar
  19. Crossa J, de los Campos G, Perez P et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186(2):713–U406. doi: 10.1534/Genetics.110.118521 PubMedCrossRefGoogle Scholar
  20. Cumbie WP, Eckert A, Wegrzyn J, Whetten R, Neale D, Goldfarb B (2011) Association genetics of carbon isotope discrimination, height and foliar nitrogen in a natural population of Pinus taeda L. Heredity 107(2):105–114. doi: 10.1038/hdy.2010.168 PubMedCrossRefGoogle Scholar
  21. Cushman SA, Landguth EL (2010) Spurious correlations and inference in landscape genetics. Mol Ecol 19(17):3596–3602CrossRefGoogle Scholar
  22. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genomewide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510PubMedCrossRefGoogle Scholar
  23. Derory J, Scotti-Saintagne C, Bertocchi E, Le Dantec L, Graignic N, Jauffres A, Casasoli M, Chancerel E, Bodenes C, Alberto F, Kremer A (2010) Contrasting relations between diversity of candidate genes and variation of bud burst in natural and segregating populations of European oaks. Heredity 105(4):401–411. doi: 10.1038/hdy.2009.170 PubMedCrossRefGoogle Scholar
  24. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modeling 196:483–493CrossRefGoogle Scholar
  25. Eckert AJ, Dyer RJ (2012) Defining the landscape of adaptive genetic diversity. Mol Ecol 21(12):2836–2838. doi: 10.1111/j.1365-294X.2012.05615.x PubMedCrossRefGoogle Scholar
  26. Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, Clair JBS, Neale DB (2009a) Asssociation genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 182(4):1289–1302. doi: 10.1534/Genetics.108.102350 CrossRefGoogle Scholar
  27. Eckert AJ, Wegrzyn JL, Pande B, Jermstad KD, Lee JM, Liechty JD, Tearse BR, Krutovsky KV, Neale DB (2009b) Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold hardiness in coastal Douglas fir (Pseudotsuga menziesii var. menziesii). Genetics 183(1):289–298PubMedCrossRefGoogle Scholar
  28. Eckert AJ, Bower AD, Gonzalez-Martinez SC, Wegrzyn JL, Coop G, Neale DB (2010a) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19(17):3789–3805PubMedCrossRefGoogle Scholar
  29. Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, Gonzalez-Martinez SC, Neale DB (2010b) Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 185(3):969–982PubMedCrossRefGoogle Scholar
  30. Eckert AJ, Shahi H, Datwyler SL, Neale DB (2012) Spatially variable natural selection and the divergence between parapatric subspecies of lodgepole pine (Pinus contorta, Pinaceae). Am J Bot 99(8):1323–1334Google Scholar
  31. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379PubMedCrossRefGoogle Scholar
  32. Eveno E, Collada C, Guevara MA, Leger V, Soto A, Diaz L, Leger P, Gonzalez-Martinez SC, Cervera MT, Plomion C, Garnier-Gere PH (2008) Contrasting patterns of selection at Pinus pinaster Ait. drought stress candidate genes as revealed by genetic differentiation analyses. Mol Biol Evol 25:417–437PubMedCrossRefGoogle Scholar
  33. Favre J, Brown S (1996) A flow cytometric evaluation of the nuclear DNA content and GC percent in genomes of European oak species. Ann For Sci 53:915–917CrossRefGoogle Scholar
  34. Foll M, Gaggiotti OE (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174:875–891PubMedCrossRefGoogle Scholar
  35. Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM (2011) A map of local adaptation in Arabidopsis thaliana. Science 333(6052):86–89CrossRefGoogle Scholar
  36. Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admetlla A, Pattini L, Nielsen R (2011) Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genetics 7(11):e1002355PubMedCrossRefGoogle Scholar
  37. Gailing O, Vornam B, Leinemann L, Finkeldey R (2009) Genetic and genomic approaches to assess adaptive genetic variation in plants: forest trees as a model. Physiol Plant 137(4):509–519. doi: 10.1111/j.1399-3054.2009.01263.x PubMedCrossRefGoogle Scholar
  38. Gnirke A, Melnikov A, Maguire J et al (2009) Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol 27:182–189PubMedCrossRefGoogle Scholar
  39. Gonzalez-Martinez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172(3):1915–1926. doi: 10.1534/Genetics.105.047126 PubMedCrossRefGoogle Scholar
  40. Gonzalez-Martinez SC, Huber D, Ersoz E, Davis JM, Neale DB (2008) Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity 101(1):19–26. doi: 10.1038/hdy.2008.21 PubMedCrossRefGoogle Scholar
  41. Griffith DA, Peres-Neto PR (2006) Spatial modelling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613PubMedCrossRefGoogle Scholar
  42. Grivet D, Sork VL, Westfall RD, Davis FW (2008) Conserving the evolutionary potential of California valley oak (Quercus lobata Née): a multivariate genetic approach to conservation planning. Mol Ecol 17(1):139–156. doi: 10.1111/J.1365-294x.2007.03498.X PubMedCrossRefGoogle Scholar
  43. Grivet D, Sebastiani F, Alia R, Bataillon T, Torre S, Zabal-Aguirre M, Vendramin GG, Gonzalez-Martinez SC (2011) Molecular footprints of local adaptation in two Mediterranean conifers. Mol Biol Evol 28:101–116PubMedCrossRefGoogle Scholar
  44. Hancock AM, Di Rienzo A (2008) Detecting the genetic signature of natural selection in human populations: models, methods, and data. Annu Rev Anthropol 37:197–217PubMedCrossRefGoogle Scholar
  45. Hancock AM, Witonsky DB, Gordon AS, Eshel G, Pritchard JK, Coop G, Di Rienzo A (2008) Adaptations to climate in candidate genes for common metabolic disorders. PLos Genetics 4(2):e32. doi: 10.1371/journal.pgen.0040032 PubMedCrossRefGoogle Scholar
  46. Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58(3):199–207CrossRefGoogle Scholar
  47. Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21(6):797–807CrossRefGoogle Scholar
  48. Holliday JA, Ralph SG, White R, Bohlmann J, Aitken SN (2008) Global monitoring of autumn gene expression within and among phenotypically divergent populations of Sitka spruce (Picea sitchensis). New Phytol 178(1):103–122PubMedCrossRefGoogle Scholar
  49. Holliday JA, Ritland K, Aitken SN (2010a) Widespread, ecologically relevant genetic markers developed from association mapping of climate-related traits in Sitka spruce (Picea sitchensis). New Phytol 188(2):501–514. doi: 10.1111/j.1469-8137.2010.03380 CrossRefGoogle Scholar
  50. Holliday JA, Yuen M, Ritland K, Aitken SN (2010b) Postglacial history of a widespread conifer produces inverse clines in selective neutrality tests. Mol Ecol 19(18):3857–3864. doi: 10.1111/j.1365-294X.2010.04767 CrossRefGoogle Scholar
  51. Holliday JA, Wang T, Aitken S (2012) Predicting adaptive phenotypes from multilocus genotypes in Sitka spruce (Picea sitchensis) using Random Forest. G3: Genes| Genomics| Genetics 2:1085–1093. 10.1534/g3.112.002733
  52. Hurme P, Repo T, Savolainen O, Paakkonen T (1997) Climatic adaptation of bud set and frost hardiness in Scots pine (Pinus sylvestris). Can J Forest Res 27(5):716–723CrossRefGoogle Scholar
  53. Hurme P, Sillanpaa MJ, Arjas E, Repo T, Savolainen O (2000) Genetic basis of climatic adaptation in Scots pine by Bayesian quantitative trait locus analysis. Genetics 156(3):1309–1322PubMedGoogle Scholar
  54. Ingvarsson PK, Garcia MV, Luquez V, Hall D, Jansson S (2008) Nucleotide poymorphism and phenotypic associations with and around the phytochrome B2 locus in European aspen (Populus tremula, Salicaceae). Genetics 178:2217–2226PubMedCrossRefGoogle Scholar
  55. Jermstad KD, Bassoni DL, Jech KS, Wheeler NC, Neale DB (2001a) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-firI. timing of vegetative bud flush. Theor Appl Genet 102(8):1142–1151CrossRefGoogle Scholar
  56. Jermstad KD, Bassoni DL, Wheeler NC, Anekonda TS, Aitken SN, Adams WT, Neale DB (2001b) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. II. Spring and fall cold-hardiness. Theor Appl Genet 102(8):1152–1158Google Scholar
  57. Jermstad KD, Bassoni DL, Jech KS, Ritchie GA, Wheeler NC, Neale DB (2003) Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir. III. Quantitative trait loci-by-environment interactions. Genetics 165(3):1489–1506Google Scholar
  58. Joost S, Bonin A, Bruford MW, Despres L, Conord C, Erhardt G, Taberlet P (2007) A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol 16(18):3955–3969. doi: 10.1111/j.1365-294X.2007.03442.x PubMedCrossRefGoogle Scholar
  59. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-y, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42(4):348–354PubMedCrossRefGoogle Scholar
  60. Kremer A, Le Corre V (2012) Decoupling of differentiation between traits and their underlying genes in response to divergent selection. Heredity 108(4):375–385. doi: 10.1038/hdy.2011.81 PubMedCrossRefGoogle Scholar
  61. Kremer A, Zanetto A, Ducousso A (1997) Multilocus and multitrait measures of differentiation for gene markers and phenotypic traits. Genetics 145(4):1229–1241PubMedGoogle Scholar
  62. Kremer A, Casasoli M, Barreneche T et al (2007) Fagaceae trees. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 7th edn, Forest trees. Springer, New York, p pp 161Google Scholar
  63. Langlet O (1971) Two hundred years of genecology. Taxon 20:653–722CrossRefGoogle Scholar
  64. Lasky JR, Des Marais DL, Mckay JK, Richards JH, Juenger TE, Keitt TH (2012) Characterizing genomic variation of Arabidopsis thaliana: the roles of geography and climate. Mol Ecol 21:5512–5529. doi: 10.1111/j.1365-294X.2012.05709.x PubMedCrossRefGoogle Scholar
  65. Le Corre V, Kremer A (2012) The genetic differentiation at quantitative trait loci under local adaption. Mol Ecol 21:1548–1566PubMedCrossRefGoogle Scholar
  66. Legendre P, Legendre L (2012) Numerical ecology, 3rd English edition developments in environmental modelling, vol 24. Elsevier, AmsterdamGoogle Scholar
  67. Mackay J, Dean JF, Plomion C, Peterson DG, Canovas FM, Pavy N, Ingvarsson PK, Savolainen O, Guevara MA, Fluch S, Vinceti B, Abarca D, Diaz-Sala C, Cervera MT (2012) Towards decoding the conifer Giga-genome. Plant Molecular Biology 80:555–569. doi: 10.1007/s11103-012-9961-7 Google Scholar
  68. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology & Evolution 18(4):189–197CrossRefGoogle Scholar
  69. Manel S, Joost S, Epperson BK, Holderegger R, Storfer A, Rosenberg MS, Scribner KT, Bonin A, Fortin MJ (2010a) Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Mol Ecol 19(17):3760–3772PubMedCrossRefGoogle Scholar
  70. Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010b) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19(17):3824–3835. doi: 10.1111/j.1365-294X.2010.04716.x CrossRefGoogle Scholar
  71. Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P (2012) Broad-scale adaptive genetic variation in Alpine plants is mainly driven by temperature and precipitation. Mol Ecol 19:3824–3835CrossRefGoogle Scholar
  72. Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17(2):240–248. doi: 10.1101/gr.5681207 PubMedCrossRefGoogle Scholar
  73. Mimura M, Aitken SN (2007) Adaptive gradients and isolation-by-distance with postglacial migration in Picea sitchensis. Heredity 99(2):224–232PubMedCrossRefGoogle Scholar
  74. Mimura M, Aitken SN (2010) Local adaptation at the range peripheries of Sitka spruce. J Evol Biol 23(2):249–258PubMedCrossRefGoogle Scholar
  75. Morgante M, De Poali E (2011) Toward the conifer genome sequence. In: Plomion C, Bousquet J, Kole C (eds) Genetics, Genomics and Breeding of Conifers Trees, pp 389–403. Edenbridge and CRC, New YorkGoogle Scholar
  76. Morgenstern EK (1996) Geographic variation in forest trees: genetic basis and application of knowledge in silviculture. Univ of British Columbia Press, VancouverGoogle Scholar
  77. Moritsuka E, Hisataka Y, Tamura M, Uchiyama K, Watanabe A, Tsumura Y, Tachida H (2012) Extended linkage disequilibrium in noncoding regions in a conifer, Cryptomeria japonica. Genetics 190(3):1145. doi: 10.1534/genetics.111.136697 PubMedCrossRefGoogle Scholar
  78. Mosca E, Eckert AJ, Di Pierro EA, Rocchini D, La Porta N, Belletti P, Neale DB (2012) The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Mol Ecol 21:5530–5545. doi: 10.1111/mec.12043 PubMedCrossRefGoogle Scholar
  79. Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9(7):325–330. doi: 10.1016/J.Plants.2004 PubMedCrossRefGoogle Scholar
  80. Nichols KM, Neale DB (2010) Association genetics, population genomics, and conservation: Revealing the genes underlying adaptation in natural populations of plants and animals. In: DeWoody JA, Bickham JW, Michler CH, Nichols KM, Olin E, Rhodes J, Woeste KE (eds) Molecular approaches in natural resource conservation and management. Cambridge University Press, New York, NY, pp 123–168Google Scholar
  81. Parchman TL, Gompert Z, Mudge J, Schilkey FD, Benkman CW, Buerkle CA (2012) Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol Ecol 21(12):2991–3005. doi: 10.1111/j.1365-294X.2012.05513.x PubMedCrossRefGoogle Scholar
  82. Pelgas B, Bousquet J, Meirmans PG, Ritland K, Isabel N (2011) QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments. BMC Genomics 12:145PubMedCrossRefGoogle Scholar
  83. Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial structure in the study of ecological communities. Glob Ecol Biogeogr 19(2):174–184. doi: 10.1111/j.1466-8238.2009.00506.x CrossRefGoogle Scholar
  84. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625PubMedCrossRefGoogle Scholar
  85. Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37:187–214. doi: 10.1146/annurev.ecolsys.37.091305.110215 CrossRefGoogle Scholar
  86. Prunier J, Laroche J, Beaulieu J, Bousquet J (2011) Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce. Mol Ecol 20(8):1702–1716. doi: 10.1111/j.1365-294X.2011.05045.x PubMedCrossRefGoogle Scholar
  87. Savolainen O, Pyhajarvi T, Knurr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619CrossRefGoogle Scholar
  88. Segelbacher G, Cushman SA, Epperson BK, Fortin M-J, Francois O, Hardy OJ, Holderegger R, Taberlet P, Waits LP, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11(2):375–385CrossRefGoogle Scholar
  89. Sork VL, Waits L (2010) Contributions of landscape genetics—approaches, insights, and future potential. Mol Ecol 19(17, SI):3489–3495. doi: 10.1111/j.1365-294X.2010.04786.x PubMedCrossRefGoogle Scholar
  90. Sork VL, Davis FW, Westfall R, Flint A, Ikegami M, Wang HF, Grivet D (2010) Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Mol Ecol 19(17):3806–3823. doi: 10.1111/j.1365-294X.2010.04726 PubMedCrossRefGoogle Scholar
  91. St. Clair JB, Mandel NL, Vance-Borland KW (2005) Genecology of Douglas fir in western Oregon and Washington. Ann Bot 96:1199–1214PubMedCrossRefGoogle Scholar
  92. Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the 'landscape' in landscape genetics. Heredity 98(3):128–142PubMedCrossRefGoogle Scholar
  93. Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19(17):3496–3514PubMedCrossRefGoogle Scholar
  94. Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604. doi: 10.1126/science.1128691 PubMedCrossRefGoogle Scholar
  95. Vasemagi A, Primmer CR (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Mol Ecol 14(12):3623–3642PubMedCrossRefGoogle Scholar
  96. Wagner HH (2003) Spatial covariance in plant communities: Integrating ordination, geostatistics, and variance testing. Ecology 84(4):1045–1057. doi: 10.1890/0012-9658(2003)084[1045:scipci];2 CrossRefGoogle Scholar
  97. Wagner HH (2004) Direct multi-scale ordination with canonical correspondence analysis. Ecology 85(2):342–351. doi: 10.1890/02-0738 CrossRefGoogle Scholar
  98. Wang TL, O’Neill GA, Aitken SN (2010) Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol Appl 20(1):153–163PubMedCrossRefGoogle Scholar
  99. Westfall RD, Conkle MT (1992) Allozyme markers in breeding zone 1050 designation. New Forests 6:279–309Google Scholar
  100. Yeaman S, Jarvis A (2006) Regional heterogeneity and gene flow maintain variance in a quantitative trait within populations of lodgepole pine. Proceedings of the Royal Society B-Biological Sciences 273(1594):1587–1593. doi: 10.1098/rspb.2006.3498 CrossRefGoogle Scholar
  101. Zoldos V, Papes D, Brown S, Panaud O, Siljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species: inter- and intra-population variation. Genome 41:162–168Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • V. L. Sork
    • 1
    • 2
  • S. N. Aitken
    • 3
  • R. J. Dyer
    • 4
  • A. J. Eckert
    • 4
  • P. Legendre
    • 5
  • D. B. Neale
    • 6
  1. 1.Department of Ecology & Evolutionary BiologyUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Institute of the Environment and SustainabilityUniversity of California, Los AngelesLos AngelesUSA
  3. 3.Centre for Forest Conservation Genetics, Department of Forest SciencesVancouverCanada
  4. 4.Department of BiologyVirginia Commonwealth UniversityRichmondUSA
  5. 5.Département de Sciences BiologiquesUniversité de MontréalMontréalCanada
  6. 6.Department of Plant SciencesUniversity of California, DavisDavisUSA

Personalised recommendations