Skip to main content
Log in

Genetic structure of Quercus rubra L. and Quercus ellipsoidalis E. J. Hill populations at gene-based EST-SSR and nuclear SSR markers

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Sympatric hybridizing oak species provide a model system for studying local adaptation. Disjunct populations of Quercus rubra L. and Quercus ellipsoidalis E. J. Hill at the northern edge of their distribution may harbor important reservoirs of adaptive genetic variation. Genic (expressed sequence tag- simple sequence repeat = EST-SSR) and non-genic nuclear microsatellite (nuclear SSR = nSSR) markers were used to estimate neutral and potentially adaptive genetic variation in these two supposedly interfertile oak species showing different adaptations to drought. Eleven populations of putative Q. rubra and Q. ellipsoidalis located in the Western Upper Peninsula of Michigan were characterized using seven EST-SSRs and eight nSSRs. Bayesian cluster analysis revealed two distinct groups corresponding to each species with evidence of low levels of potential introgression. A comparison of the genetic structure of adult trees and seedlings revealed no evidence for selection against hybrids. Overall, similar levels of genetic variation and differentiation between populations and species were found at both EST-SSRs and nSSRs indicating that most EST-SSRs chosen reflect neutral variation. Two loci, 3A05 (nSSR) and GOT021 (EST-SSR, putative histidine kinase 4-like), were identified as putative outlier loci between species showing largely reduced variation in Q. ellipsoidalis. Future analyses of an increased number of EST-SSRs located in functional genes will allow the identification of genes involved in the reproductive isolation between both species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrams MD (1990) Adaptations and responses to drought in Quercus species of North America. Tree Physiol 7:227–238

    Article  PubMed  Google Scholar 

  • Aldrich PR, Cavender-Bares J (2011) Quercus wild crop relatives: genomic and breeding resources. In: Kole C (ed). Springer, Berlin, pp. 89–129

  • Aldrich PR, Michler CH, Sun WL, Romero-Severson J (2002) Microsatellite markers for northern red oak (Fagaceae: Quercus rubra). Mol Ecol Notes 2:472–474

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Antao T, Lopes A, Lopes R, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F ST -outlier method. BMC Bioinforma 9:323

    Article  Google Scholar 

  • Arnold ML, Martin NH (2010) Hybrid fitness across time and habitats. Trends Ecol Evol 25:530–536

    Article  PubMed  Google Scholar 

  • Bacilieri R, Ducousso A, Petit RJ, Kremer A (1996) Mating system and asymmetric hybridization in a mixed stand of European oaks. Evolution 50:900–908

    Article  Google Scholar 

  • Barnes BVW, Warren Herbert Jr. (2004) Michigan trees, revised and updated: a guide to the trees of the Great Lakes region. University of Michigan Press, Ann Arbor

  • Beaumont MA (2005) Adaptation and speciation: what can F ST tell us? Trends Ecol Evol 20:435–440

    Article  PubMed  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. P Roy Soc B-Biol Sci 263:1619–1626

    Article  Google Scholar 

  • Boavida LC, Silva JP, Feijo JA (2001) Sexual reproduction in the cork oak (Quercus suber L). II. Crossing intra- and interspecific barriers. Sex Plant Reprod 14:143–152

    Article  Google Scholar 

  • Burger WC (1975) The species concept in Quercus. Taxon 24:45–50

    Article  Google Scholar 

  • Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. Heredity 99:616–623

    Article  CAS  Google Scholar 

  • Cavender-Bares J, Pahlich A (2009) Molecular, morphological, and ecological niche differentiation of sympatric sister oak species, Quercus virginiana and Q. geminata (Fagaceae). Am J Bot 96:1690–1702

    Article  PubMed  Google Scholar 

  • Chesnoiu EN, Sofletea N, Curtu AL, Toader A, Radu R, Enescu M (2009) Bud burst and flowering phenology in a mixed oak forest from Eastern Romania. Ann For Res 52:199–206

    Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Coyer JA, Hoarau G, Pearson G, Mota C, Juterbock A, Alpermann T, John U, Olsen JL (2011) Genomic scans detect signatures of selection along a salinity gradient in populations of the intertidal seaweed Fucus serratus on a 12 km scale. Mar Genomics 4:41–49

    Article  PubMed  CAS  Google Scholar 

  • Craft KJ, Ashley MV, Koenig WD (2002) Limited hybridization between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal California. Am J Bot 89(11):1792–1798

    Article  PubMed  CAS  Google Scholar 

  • Curtu A, Gailing O, Finkeldey R (2007a) Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evol Biol 7:218

    Article  PubMed  Google Scholar 

  • Curtu A, Gailing O, Leinemann L, Finkeldey R (2007b) Genetic variation and differentiation within a natural community of five oak species (Quercus spp.). Plant Biol 9:116–126

    Article  PubMed  CAS  Google Scholar 

  • Curtu A, Gailing O, Finkeldey R (2009) Patterns of contemporary hybridization inferred from paternity analysis in a four-oak-species forest. BMC Evol Biol 9:284

    Article  PubMed  Google Scholar 

  • Desikan R, Horák J, Chaban C, Mira-Rodado V, Witthöft J, Elgass K, Grefen C, Cheung M-K, Meixner AJ, Hooley R, Neill SJ, Hancock JT, Harter K (2008) The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS One 3:e2491

    Article  PubMed  Google Scholar 

  • Doak DF, Morris WF (2010) Demographic compensation and tipping points in climate-induced range shifts. Nature 467:959–962

    Article  PubMed  CAS  Google Scholar 

  • Dodd RS, Afzal-Rafii Z (2004) Selection and dispersal in a multispecies oak hybrid zone. Evolution 58:261–269

    PubMed  Google Scholar 

  • Dow BD, Ashley MV, Howe HF (1995) Characterization of highly variable (GA/CT) microsatellites in the bur oak, Quercus macrocarpa. Theor Appl Genet 91:137–141

    Article  CAS  Google Scholar 

  • Durand J, Bodenes C, Chancerel E, Frigerio J-M, Vendramin G, Sebastiani F, Buonamici A, Gailing O, Koelewijn H-P, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herran A, Ikaran Z, Cabane C, Ueno S, Alberto F, Dumoulin P-Y, Guichoux E, de Daruvar A, Kremer A, Plomion C (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11:570

    Article  PubMed  Google Scholar 

  • Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132

    Article  PubMed  CAS  Google Scholar 

  • Emms SK, Arnold ML (1997) The effect of habitat on parental and hybrid fitness: transplant experiments with Louisiana irises. Evolution 51:1112–1119

    Article  Google Scholar 

  • ESRI (Environmental Systems Resource Institute) (2009) ArcMap 9.2: ArcGIS for desktop. Redlands, California (http://www.esri.com/software/arcgis/arcgis-for-desktop

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchical structured population. Heredity 103:285–298

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • Gailing O, Lind J, Lilleskov E (2012) Leaf morphological and genetic differentiation between Quercus rubra L. and Q. ellipsoidalis E. J. Hill populations in contrasting environments. Plant Syst Evol 298:1533–1545

    Article  Google Scholar 

  • Goicoechea PG, Petit RJ, Kremer A (2012) Detecting the footprints of divergent selection in oaks with linked markers. Heredity. doi:10.1038/hdy.2012.51

  • Hipp AL (2010) Hill’s oak: the taxonomy and dynamics of a Western Great Lake endemic. Arnoldia 67:1–13

    Google Scholar 

  • Hipp AL, Weber JA (2008) Taxonomy of Hill’s oak (Quercus ellipsoidalis: Fagaceae): evidence from AFLP data. Syst Bot 33:148–158

    Article  Google Scholar 

  • Hokanson SC, Isebrands JG, Jensen RJ, Hancock JF (1993) Isozyme variation in oaks of the Apostle Islands in Wisconsin: genetic structure and levels of inbreeding in Quercus rubra and Q. ellipsoidalis (Fagaceae). Am J Bot 80:1349–1357

    Article  CAS  Google Scholar 

  • Howard DJ, Preszler RW, Williams J, Fenchel S, Boecklen WJ (1997) How discrete are oak species? Insights from a hybrid zone between Quercus grisea and Quercus gambelii. Evolution 51:747–755

    Article  Google Scholar 

  • Jensen RJ, Hokanson SC, Isebrands JG, Hancock JF (1993) Morphometric variation in oaks of the Apostle Islands in Wisconsin: evidence of hybridization between Quercus rubra and Q. ellipsoidalis (Fagaceae). Am J Bot 80:1358–1366

    Article  Google Scholar 

  • Jimenez P, Agundez D, Alia R, Gil L (1999) Genetic variation in central and marginal populations of Quercus suber L. Silvae Genet 48:278–284

    Google Scholar 

  • Jimenez P, Lopez de Heredia U, Collada C, Lorenzo Z, Gil L (2004) High variability of chloroplast DNA in three Mediterranean evergreen oaks indicates complex evolutionary history. Heredity 93:510–515

    Article  PubMed  CAS  Google Scholar 

  • Kampfer S, Lexer C, Glössl J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186

    Article  CAS  Google Scholar 

  • Kremer A, Petit R (1993) Gene diversity in natural populations of oak species. Ann For Sci 50:186s–202s

    Article  Google Scholar 

  • Kremer A, Dupouey JL, Deans JD, Cottrell J, Csaikl U, Finkeldey R, Espinel S, Jensen J, Kleinschmit J, Van Dam B, Ducousso A, Forrest I, Lopez de Heredia U, Lowe AJ, Tutkova M, Munro RC, Steinhoff S, Badeau V (2002) Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Ann For Sci 59:777–787

    Article  Google Scholar 

  • Langella O (1999) Populations 1.2.30: a population genetic software CNRS UPR9034

  • Latter BDH (1973) The island model of population differentiation: a general solution. Genetics 73:147–157

    PubMed  CAS  Google Scholar 

  • Lepais O, Petit RJ, Guichoux E, Lavabre JE, Alberto F, Kremer A, Gerber S (2009) Species relative abundance and direction of introgression in oaks. Mol Ecol 18:2228–2242

    Article  PubMed  CAS  Google Scholar 

  • Lexer C, Kremer A, Petit RJ (2006) Shared alleles in sympatric oaks: recurrent gene flow is a more parsimonious explanation than ancestral polymorphism. Mol Ecol 15:2007–2012

    Article  PubMed  CAS  Google Scholar 

  • Lopez de Heredia U, Valbuena-Carabaña M, Cordoba M, Gil L (2009) Variation components in leaf morphology of recruits of two hybridising oaks [Q. petraea (Matt.) Liebl. and Q. pyrenaica Willd.] at a small spatial scale. Eur J Forest Res 128:543–554

    Article  Google Scholar 

  • Lorenzo Z, Burgarella C, Lopez de Heredia U, Lumaret R, Petit RJ, Soto A, Gil L (2009) Relevance of genetics for conservation policies: the case of Minorcan cork oaks. Ann Bot-London 104:1069–1076

    Article  Google Scholar 

  • Luro F, Costantino G, Terol J, Argout X, Allario T, Wincker P, Talon M, Ollitrault P, Morillon R (2008) Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genomics 9:287

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • McShea WJ, Healy WM, Devers P, Fearer T, Koch FH, Stauffer D, Waldon J (2007) Forestry matters: decline of oaks will impact wildlife in hardwood forests. J Wildlife Manage 71:1717–1728

    Article  Google Scholar 

  • Mir C, Toumi L, Jarne P, Sarda V, Di Guisto F, Lumaret R (2006) Endemic North African Quercus afares Pomel originates from hybridisation between two genetically very distant oak species (Q. suber L. and Q. canariensis Willd.): evidence from nuclear and cytoplasmic markers. Heredity 96:175–184

    Article  PubMed  CAS  Google Scholar 

  • Moran EV, Willis J, Clark JS (2012) Genetic evidence for hybridization in red oaks (Quercus sect. Lobatae, Fagaceae). Am J Bot 99:92–100

    Article  PubMed  Google Scholar 

  • Muir G, Fleming CC, Schlötterer C (2001) Three divergent rDNA clusters predate the species divergence in Quercus petraea (Matt.) Liebl. and Quercus robur L. Mol Biol Evol 18:112–119

    Article  PubMed  CAS  Google Scholar 

  • Nagy ES, Rice KJ (1997) Local adaptation in two subspecies of an annual plant: implications for migration and gene flow. Evolution 51:1079–1089

    Article  Google Scholar 

  • Narum SR, Hess JE (2011) Comparison of F ST outlier tests for SNP loci under selection. Mol Ecol Resour 11:184–194

    Article  PubMed  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. P Natl Acad Sci USA 70:3321–3323

    Article  CAS  Google Scholar 

  • Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16:1365–1377

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Pautasso M (2009) Geographical genetics and the conservation of forest trees. Perspect Plant Ecol 11:157–189

    Article  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peñaloza-Ramírez JM, González-Rodríguez A, Mendoza-Cuenca L, Caron H, Kremer A, Oyama K (2010) Interspecific gene flow in a multispecies oak hybrid zone in the Sierra Tarahumara of Mexico. Ann Bot 105:389–399

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GenePop (Version-1.2)—population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rieseberg LH, Ellstrand NC, Arnold M (1993) What can molecular and morphological markers tell us about plant hybridization. CRC Cr Rev Plant Sci 12:213–241

    CAS  Google Scholar 

  • Rosenburg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rushton B (1993) Natural hybridization within the genus Quercus L. Ann For Sci 50:73s–90s

    Article  Google Scholar 

  • Salvini D, Bruschi P, Fineschi S, Grossoni P, Kjær ED, Vendramin GG (2009) Natural hybridisation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. within an Italian stand as revealed by microsatellite fingerprinting. Plant Biol 11:758–765

    Article  PubMed  CAS  Google Scholar 

  • Scotti-Saintagne C, Mariette S, Porth I, Goicoechea PG, Barreneche T, Bodénès C, Burg K, Kremer A (2004) Genome scanning for interspecific differentiation between two closely related oak species [Quercus robur L. and Q. petraea (Matt.) Liebl.]. Genetics 168:1615–1626

    Article  PubMed  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. Freeman, San Fransisco

    Google Scholar 

  • Sork V, Huang S, Wiener E (1993) Macrogeographic and fine-scale genetic structure in a North American oak species, Quercus rubra L. Ann For Sci 50:261s–270s

    Article  Google Scholar 

  • Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K, Glossl J (1997) Identification and characterization of (GA/CT)n-microsatellite loci from Quercus petraea. Plant Mol Biol 33:1093–1096

    Article  PubMed  CAS  Google Scholar 

  • Sullivan AR, Lind JF, McCleary TS, Romero-Severson J, Gailing O (2012) Development and characterization of genomic and gene-based microsatellite markers in North American red oak species. Plant Mol Biol Rep. doi:10.1007/s11105-012-0495-6

  • Valbuena-Carabaña M, Gonzáles-Martínez SC, Sork VL, Collada C, Soto A, Goicoechea PG, Gil L (2005) Gene flow and hybridisation in a mixed oak forest (Quercus pyrenaica Willd. and Quercus petraea (Matts.) Liebl.) in central Spain. Heredity 95:457–465

    Article  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25:233–239

    Article  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whittemore AT, Schaal BA (1991) Interspecific gene flow in sympatric oaks. P Natl Acad Sci 88:2540–2544

    Article  CAS  Google Scholar 

  • Woodall CW, Oswalt CM, Westfall JA, Perry CH, Nelson MD, Finley AO (2009) An indicator of tree migration in forests of the Eastern United States. Forest Ecol Manag 257:1434–1444

    Article  Google Scholar 

  • Wright S (1922) Coefficients of inbreeding and relationship. Am Nat 56:330–338

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank James Schmierer for his help in sample collection in the Baraga Plains and Dr. Kerry Woods for his help in the identification of populations in the Huron Mountain Wildlife Reserve. Q. rubra and Q. ellipsoidalis reference samples were provided by Jeanne Romero-Severson and Andrew Hipp. Additionally, we would like to thank Jonathan Riehl for invaluable advice and guidance on the construction of many of the graphics. We also thank two anonymous reviewers for their very helpful comments on earlier drafts. Funding for the study came from Michigan Technological University start-up funds to Oliver Gailing, the Michigan Technological University Research Excellence fund, the USDA McIntire Stennis fund, the Huron Mountain Wildlife Foundation, the Hanes Trust and the NSF Plant Genome Research program (NSF 1025974).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Gailing.

Additional information

Communicated by G. G. Vendramin

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 307 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lind, J.F., Gailing, O. Genetic structure of Quercus rubra L. and Quercus ellipsoidalis E. J. Hill populations at gene-based EST-SSR and nuclear SSR markers. Tree Genetics & Genomes 9, 707–722 (2013). https://doi.org/10.1007/s11295-012-0586-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0586-4

Keywords

Navigation