Tree Genetics & Genomes

, Volume 8, Issue 4, pp 821–829 | Cite as

SNP discovery, gene diversity, and linkage disequilibrium in wild populations of Populus tremuloides

  • Colin T. Kelleher
  • Jennifer Wilkin
  • Jun Zhuang
  • Andrés Javier Cortés
  • Álvaro Luis Pérez Quintero
  • Thomas F. Gallagher
  • Jörg Bohlmann
  • Carl J. Douglas
  • Brian E. Ellis
  • Kermit Ritland
Original Paper

Abstract

The use of single-nucleotide polymorphisms (SNPs) as molecular markers in plant studies has become increasingly common. With the development of these markers, there is an interest in determining levels of variation in natural populations. Here, we identify and characterize levels of SNPs in wild populations of aspen (Populus tremuloides Michx.). Four populations were sampled from Alberta and British Columbia in Western Canada. A total of 35 gene regions were selected for analysis. The loci selected are mainly involved in wood formation and include regions from genes for lignin biosynthesis, cellulose biosynthesis, and other cell wall compounds and a number of transcription factors. Other genes included those coding for growth hormones, disease resistance, and light responses. Primers were developed from conserved regions in multi-species EST alignments. Regions were PCR amplified, and products (approximately 500 to 1,000 bp) were assessed for levels of SNPs using Ecotilling. From a total of approximately 25 kb 462 SNPs were identified, over 18 SNPs/kb. Thus, SNPs are an abundant and potentially useful molecular marker in aspen. Gene diversity (heterozygosity) varied in the gene regions, with an overall average of HT = 0.18. Although gene diversity was considerable, genetic differentiation was low with the overall FST value being 0.004. A surrogate measure of linkage disequilibrium (LD) was calculated, and overall, the LD was shown to decay relatively rapidly with distance along the gene region. The results obtained from the wood formation genes in this study will enable further targeting of regions for association studies on lignin and cellulose variation in aspen and other Populus species.

Keywords

SNPs Populus tremuloides Gene diversity Wood formation Lignin Cellulose 

Supplementary material

11295_2012_467_MOESM1_ESM.doc (64 kb)
Online resource 1Summary of the Ecotilling data showing the length of the gene region, the number of SNPs detected, the polymorphism rate per kilobase, and the gene diversity and genetic differentiation averaged across each gene region (DOC 64 kb)
11295_2012_467_MOESM2_ESM.pdf (84 kb)
Online resource 2Graphs showing the extent of LD in the different genes. The lengths analyzed were small, but the decay is still evident across all regions (PDF 84 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546PubMedCrossRefGoogle Scholar
  3. Boudet AM (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:81–96CrossRefGoogle Scholar
  4. Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786PubMedCrossRefGoogle Scholar
  5. Ehlting J, Mattheus N, Aeschliman DS, Li EY, Hamberger B, Cullis IF, Zhuang J, Kaneda M, Mansfield SD, Samuels L, Ritland K, Ellis BE, Bohlmann J, Douglas CJ (2005) Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42:618–640PubMedCrossRefGoogle Scholar
  6. Excoffier LGL, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47–50Google Scholar
  7. Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang J, Cheung D, Hamberger B, Aboutorabi F, Kalynyak T, Johnson L, Bohlmann J, Ellis BE, Douglas CJ, Cronk QCB (2006) Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol 15:1367–1378PubMedCrossRefGoogle Scholar
  8. Hamzeh M, Dayanandan S (2004) Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast trnT-trnF region and nuclear rDNA. Am J Bot 91:1398–1408PubMedCrossRefGoogle Scholar
  9. Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhlen M, Teeri TT, Lundeberg J, Sundberg B, Nilsson P, Sandberg G (2001) A transcriptional roadmap to wood formation. Proc Natl Acad Sci U S A 98:14732–14737PubMedCrossRefGoogle Scholar
  10. Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231CrossRefGoogle Scholar
  11. Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812PubMedCrossRefGoogle Scholar
  12. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877PubMedCrossRefGoogle Scholar
  13. Ingvarsson PK (2005) Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics 169:945–953PubMedCrossRefGoogle Scholar
  14. Israelsson M, Eriksson ME, Hertzberg M, Aspeborg H, Nilsson P, Moritz T (2003) Changes in gene expression in the wood-forming tissue of transgenic hybrid aspen with increased secondary growth. Plant Mol Biol 52:893–903PubMedCrossRefGoogle Scholar
  15. Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas fir. Genetics 171:2029–2041PubMedCrossRefGoogle Scholar
  16. Oetting WS, Lee HK, Flanders DJ, Wiesner GL, Sellers TA, King RA (1995) Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics 30:450–458PubMedCrossRefGoogle Scholar
  17. Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523PubMedCrossRefGoogle Scholar
  18. Pot D, McMillan L, Echt C, Le Provost G, Garnier-Gere P, Cato S, Plomion C (2005) Nucleotide variation in genes involved in wood formation in two pine species. New Phytol 167:101–112PubMedCrossRefGoogle Scholar
  19. Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071PubMedCrossRefGoogle Scholar
  20. Ralph S, Chun HJ, Cooper D, Kirkpatrick R, Kolosova N, Gunter L, Tuskan G, Douglas C, Holt R, Jones S, Marra M, Bohlmann J (2008) Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding. BMC Genomics 9:57PubMedCrossRefGoogle Scholar
  21. Ramsay H, Rieseberg LH, Ritland K (2009) The correlation of evolutionary rate with pathway position in plant terpenoid biosynthesis. Mol Biol Evol 26:1045–1053PubMedCrossRefGoogle Scholar
  22. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org, Vienna, Austria.
  23. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  24. Schmid KJ, Rosleff Sörensen T, Stracke R, Törjék O, Altmann T, Mitchell-Olds T, Weisshaar B (2003) Large-scale identification and analysis of genome-wide single-nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res 13:1250–1257PubMedCrossRefGoogle Scholar
  25. Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, Hertzberg M, Sandberg G (2004) A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell 16:2278–2292PubMedCrossRefGoogle Scholar
  26. Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri TT, Boerjan W, Gustafsson P, Uhlen M, Sundberg B, Lundeberg J (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc Natl Acad Sci U S A 95:13330–13335PubMedCrossRefGoogle Scholar
  27. Sved JA (1971) Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor Popul Biol 2:125–141PubMedCrossRefGoogle Scholar
  28. Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641PubMedCrossRefGoogle Scholar
  29. Tuskan G, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho P, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé J, Locascio P, Luo Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray ex Brayshaw). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  30. Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288CrossRefGoogle Scholar
  31. Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Colin T. Kelleher
    • 1
    • 2
  • Jennifer Wilkin
    • 1
  • Jun Zhuang
    • 1
  • Andrés Javier Cortés
    • 2
    • 3
  • Álvaro Luis Pérez Quintero
    • 2
    • 3
  • Thomas F. Gallagher
    • 3
  • Jörg Bohlmann
    • 1
    • 4
    • 5
  • Carl J. Douglas
    • 4
  • Brian E. Ellis
    • 1
  • Kermit Ritland
    • 5
  1. 1.Michael Smith LaboratoriesUniversity of British ColumbiaVancouverCanada
  2. 2.DBN Plant Molecular LaboratoryNational Botanic Gardens of IrelandGlasnevinIreland
  3. 3.School of Biology and Environmental ScienceUniversity College DublinBelfieldIreland
  4. 4.Department of BotanyUniversity of British ColumbiaVancouverCanada
  5. 5.Department of Forest SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations