Skip to main content
Log in

An efficient and reproducible protocol for production of AFLP markers in tree genomes using fluorescent capillary detection

  • Short Communication
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

An optimized protocol for the development and discovery of polymorphic AFLP markers in tree species is described. The protocol was optimized for the production of fluorescently labeled PCR products and analysis using a capillary sequencer. This approach has been demonstrated to be efficient and reproducible for tree species with complex genomes. The most important modification was in the selective amplification step. Instead of using a traditional step down PCR, a fixed and higher annealing temperature was employed, improving the reproducibility and sensitivity of the protocol. The levels of polymorphisms detected with the optimized protocol on three woody species are in agreement with those previously reported in the literature for tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abedinia M, Henry RJ, Blakeney AB, Lewin LG (2000) Accessing genes in the tertiary gene pool of rice by direct introduction of total DNA from Zizania palustris (Wild Rice). Plant Mol Biol Rep 18:133–138

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2010) Plant DNA C-values database (release 5.0, Dec. 2010). http://www.kew.org/cvalues/. Accessed 02 Aug 2011

  • Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914

    Article  PubMed  CAS  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  PubMed  CAS  Google Scholar 

  • Busch JD, Miller MP, Paxton EH, Sogge MK, Keim P (2000) Genetic variation in the endangered southwestern willow flycatcher. Auk 117:586–595

    Article  Google Scholar 

  • Cervera MT, Remington D, Frigerio J-M, Storme V, Ivens B, Boerjan W, Plomion C (2000) Improved AFLP analysis of tree species. Can J Forest Res 30:1608–1616

    Article  CAS  Google Scholar 

  • Colbeck G, Gibbs H, Marra P, Hobson K, Webster M (2008) Phylogeography of a widespread North American migratory songbird (Setophaga ruticilla). J Heredity 99:453–463

    Article  CAS  Google Scholar 

  • Gonçalves MM, Lemos MVF, Galetti PM Jr, Freitas PD, Neto MAAF (2005) Fluorescent amplified fragment length polymorphism (fAFLP) analyses and genetic diversity in Litopenaeus vannamei (Penaeidae). Genet Mol Biol 28:267–270

    Article  Google Scholar 

  • Grundt HH, Kjølner S, Borgen L, Rieseberg LH, Brochmann C (2006) High biological species diversity in the arctic flora. PNAS 103:972–975

    Article  PubMed  CAS  Google Scholar 

  • Hartl L, Seefelder S (1998) Diversity of selected hop cultivars detected by fluorescent AFLPs. TAG 96:112–116

    Article  CAS  Google Scholar 

  • Herrera C, Bazaga P (2009) Quantifying the genetic component of phenotypic variation in unpedigreed wild plants: tailoring genomic scan within-population use. Mol Ecol 17:2602–2614

    Article  Google Scholar 

  • Huang J, Sun M (1999) A modified AFLP with fluorescence-labelled primers and automated DNA sequencer detection for efficient fingerprinting analysis in plants. Biotechnol Tech 13:277–278

    Article  CAS  Google Scholar 

  • Karudapuram S, Larson S (2005) Identification of Hedysarum varieties using amplified fragment length polymorphism on a capillary electrophoresis system. J Biomol Tech 16:316–324

    Google Scholar 

  • Kim MS, Brunsfeld SJ, McDonald GI, Klopfenstein NB (2003) Effect of white pine blister rust (Cronartium ribicola) and rust-resistance breeding on genetic variation in western white pine (Pinus monticola). Theor Appl Genet 106:1004–1010

    PubMed  Google Scholar 

  • Kim Y, Choi H, Kang B (2005) An AFLP-based linkage map of Japanese red pine (Pinus densiflora) using haploid DNA samples of megagametophytes from a single maternal tree. Mol Cells 2:201–209

    Google Scholar 

  • Kim MS, Richardson BA, McDonald GI, Klopfenstein NB (2011) Genetic diversity and structure of western white pine (Pinus monticola) in North America: a baseline study for conservation, restoration, and addressing impacts of climate change. Tree Genet Genom 7:11–21

    Article  Google Scholar 

  • Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong JM, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M et al (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807

    Article  PubMed  CAS  Google Scholar 

  • Komulainen P, Brown GR, Mikkonen M, Karhu A, Garcia-Gil MR et al (2003) Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda. Theor Appl Genet 107:667–678

    Article  PubMed  CAS  Google Scholar 

  • Lerceteau E, Szmidt A (1999) Properties of AFLP markers in inheritance and genetic diversity studies of Pinus sylvestris L. Heredity 82:252–260

    Article  PubMed  CAS  Google Scholar 

  • Liu MS, Chen FT (2000) Rapid analysis of amplified double-stranded DNA by capillary electrophoresis with laser-induced fluorescence detection. Mol Biotechnol 15:143–146

    Article  PubMed  CAS  Google Scholar 

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  PubMed  CAS  Google Scholar 

  • Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394

    Article  PubMed  Google Scholar 

  • Myburg AA, Remington DL, O’Malley DM, Sederoff RR, Whetten RW (2001) High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. Biotechniques 30:348–357

    PubMed  CAS  Google Scholar 

  • Paglia G, Morgante M (1998) PCR-based multiplex DNA fingerprinting techniques for the analysis of conifer genomes. Mol Breed 4:173–177

    Article  CAS  Google Scholar 

  • Parisod C, Bonvin G (2008) Fine-scale genetic structure and marginal processes in an expanding population of Biscutella laevigata L. (Brassicaceae). Heredity 101:536–542

    Article  PubMed  CAS  Google Scholar 

  • Remington D, Whetten R, Liu B, O’Malley D (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. TAG 98:1279–1292

    Article  PubMed  CAS  Google Scholar 

  • Romero G, Adeva C, Battad Z II (2009) Genetic fingerprinting: advancing the frontiers of crop biology research. Phil Sci Lett 2:8–13

    Google Scholar 

  • Schnell RJ, Olano CT, Campbell RJ, Brown JS (2001) AFLP analysis of genetic diversity within a jackfruit germplasm collection. Sci Hort 91:261–274

    Article  CAS  Google Scholar 

  • Stefenon VM, Gailing O, Finkeldey R (2007) Genetic structure of Araucaria angustifolia (Araucariaceae) populations in Brazil: implications for the in situ conservation of genetic resources. Plant Biol 9:516–525

    Article  PubMed  CAS  Google Scholar 

  • Terabe S, Monton M, Le Saux T, Imami K (2006) Applications of capillary electrophoresis to high-sensitivity analyses of biomolecules. Pure Appl Chem 78:1057–1067

    Article  CAS  Google Scholar 

  • Ukrainetz NK, Ritland K, Mansfield SD (2008) An AFLP linkage map for Douglas fir based upon multiple full-sib families. Tree Genet Genom 2:181–191

    Article  Google Scholar 

  • Vendrame WA, Kochert G, Wetzstein HY (1999) AFLP analysis of variation in pecan somatic embryos. Plant Cell Rep 18:853–857

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP—a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Vuylsteke M, Peleman JD, van Eijk MJ (2007) AFLP technology for DNA fingerprinting. Nat Protoc 2:1387–1398

    Article  PubMed  CAS  Google Scholar 

  • Wolf P, Doche B, Gielly L, Taberlet P (2004) Genetic structure of Rhododendron ferrugineum at a wide range of spatial scales. J Hered 95:301–308

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Chena S, Chen F, Fanga W, Lia F (2010) A preliminary genetic linkage map of chrysanthemum (Chrysanthemum morifolium) cultivars using RAPD, ISSR and AFLP markers. Sci Hort 125:422–428

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from INNOVA-CHILE (grant number 05CTE04-03) and Genómica Forestal. Ross Whetten is gratefully acknowledged for the critical reading of this manuscript and discussions throughout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Hasbún.

Additional information

Communicated by S. González-Martínez

The AFLP process is covered by patents and patent applications held by Keygene NV (Wageningen, Netherlands), and users of the technique should either purchase a commercial kit that confers a license to use the technique or contact Keygene directly regarding licensing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasbún, R., Iturra, C., Moraga, P. et al. An efficient and reproducible protocol for production of AFLP markers in tree genomes using fluorescent capillary detection. Tree Genetics & Genomes 8, 925–931 (2012). https://doi.org/10.1007/s11295-011-0463-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0463-6

Keywords

Navigation