Tree Genetics & Genomes

, Volume 8, Issue 2, pp 365–378 | Cite as

Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits

  • Angjelina BelajEmail author
  • Maria del Carmen Dominguez-García
  • Sergio Gustavo Atienza
  • Nieves Martín Urdíroz
  • Raúl De la Rosa
  • Zlatko Satovic
  • Antonio Martín
  • Andrzej Kilian
  • Isabel Trujillo
  • Victoriano Valpuesta
  • Carmen Del Río
Original Paper


Molecular markers (SSR, SNP and DArT) and agronomical traits have been used in the world’s largest olive (Olea europaea L.) germplasm collection (IFAPA, Centre Alameda del Obispo, Cordoba, Spain) to study the patterns of genetic diversity and underlying genetic structure among 361 olive accessions. In addition the marker data were used to construct a set of core collections by means of two different algorithms (MSTRAT and PowerCore) based on M (maximization) strategy. Our results confirm that the germplasm collection is a useful source of genetically diverse material. We also found that geographical origin is an important factor structuring genetic diversity in olive. Subsets of 18, 27, 36, 45 and 68 olive accessions, representing respectively 5%, 7.5%, 10%, 12.5% and 19% of the whole germplasm collection, were selected based on the information obtained by all the data set as well as each marker type considered individually. According to our results, the core collections that represent between 19% and 10% of the total collection size could be considered as optimal to retain the bulk of the genetic diversity found in this collection. Due to its high efficiency at capturing all the alleles/traits states found in the whole collection, the core size of 68 accessions could be of special interest for genetic conservation applications in olive. The high average genetic distance and diversity and the almost equal representation of accessions from different geographical regions indicate that the core size of 36 accessions, could be the working collection for olive breeders.


Olive germplasm Genetic diveristy Core sets Molecular markers Olive breeding 



The present work was partly supported by Fundación Genoma España, Junta de Andalucia through Instituto de Investigación y Formación Agraria y Pesquera and Corporación Tecnológica de Andalucía. The authors acknowledge the contribution of Luis Rallo during the development of this study. Thanks are due to the Spanish National Institute for Research in Agricultura (INIA) which supported the conservation and identification of WOGB, through the Projects FEDER-INIA: RFP2009-00008, RF2009-00011-00-00. We acknowledge the technical contribution of C. Calderón for DNA extraction. A. Belaj has got a postdoctoral INIA contract (Subprograma DOC-INIA) National Institute of Agricultural Research (INIA), Ministry of Education and Culture, Spain. M.C. Dominguez-García is in debt to the INIA for a PhD grant.

Supplementary material

11295_2011_447_MOESM1_ESM.xls (85 kb)
Supplementary material file 1 Structure data of the olive accessions from the WOGB collection included in the development of the core collection. Q values for the STRUCTURE analysis for both K = 2 and K = 3 are shown. Register number of the accessions in the WOGB collection, their country and Mediterranean regions of origin are also indicated (EXCEL format) (XLS 85 kb)
11295_2011_447_MOESM2_ESM.xls (32 kb)
Supplementary material file 2 List of cultivars included in the five core collections (EXCEL format) (XLS 32 kb)


  1. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420PubMedCrossRefGoogle Scholar
  2. Amalraj VA, Balakrishnan R, Jebadhas AW, Balasundaram N (2006) Constituting a core collection of Saccharum spontaneum L. and comparison of three stratified random sampling procedures. Genet Resour Crop Evol 53:1563–1572CrossRefGoogle Scholar
  3. Baldoni L, Tosti N, Ricciolini C, Belaj A, Arcioni S, Pannelli G, Germana MA, Mulas M, Porceddu A (2006) Genetic structure of wild and cultivated olives in the Central Mediterranean Basin. Ann Bot 98:935–942PubMedCrossRefGoogle Scholar
  4. Baldoni L, Cultrera NG, Mariotti R, Ricciolini C, Arcioni S, Vendramin GG, Buonamici A, Porceddu A, Sarri V, Ojeda MA, Trujillo I, Rallo L, Belaj A, Perri E, Salimonti A, Muzzalupo I, Casagrande A, Lain O, Messina R, Testolin R (2009) A consensus list of microsatellite markers for olive genotyping. Mol Breed 24:213–231CrossRefGoogle Scholar
  5. Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M, Charmet G (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 11:1265–1275CrossRefGoogle Scholar
  6. Barnaud A, Lacombe T, Doligez A (2006) Linkage disequilibrium in cultivated grapevine, Vitis vinifera L. Theor Appl Genet 112:708–716PubMedCrossRefGoogle Scholar
  7. Barranco D, Rallo L (2000) Olive cultivars in Spain. HorTechnology 10:107–110Google Scholar
  8. Barranco D, Trujillo I, Rallo L (2005) Variedades de olivo en España. MAPA and Ediciones Mundi-Prensa, MadridGoogle Scholar
  9. Bartolini G, Prevost G, Messeri C, Carignani C (2005) Olive germplasm: cultivars and world-wide collections. FAO/Plant Production and Protection, Rome. Available at:
  10. Belaj A, Trujillo I, De la Rosa R, Rallo L, Giménez MJ (2001) Polymorphism and discriminating capacity of randomly amplified polymorphic markers in an olive germplasm bank. J Am Soc Hort Sci 126:64–71Google Scholar
  11. Belaj A, Satovic Z, Rallo L, Trujillo I (2002) Genetic diversity and relationships in olive (Olea europaea L.) germplasm collections as determined by randomly amplified polymorphic DNA. Theor Appl Genet 105:638–644PubMedCrossRefGoogle Scholar
  12. Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744PubMedCrossRefGoogle Scholar
  13. Belaj A, Muñoz-Diez C, Baldoni L, Satovic Z, Barranco D (2010) Genetic diversity and relationships of wild and cultivated olives at regional level in Spain. Sci Hort 124:323–330CrossRefGoogle Scholar
  14. Berg EE, Hamrick JL (1997) Quantification of genetic diversity at allozyme loci. Can J For Res 27:415–424CrossRefGoogle Scholar
  15. Besnard G, Baradat P, Bervillé A (2001a) Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theor Appl Genet 102:251–258CrossRefGoogle Scholar
  16. Besnard G, Baradat P, Breton C, Khadari B, Bervillé A (2001b) Olive domestication from structure of oleasters and cultivars using RAPDs and mitochondrial RFLP. Genet Sel Evol 13:S251–S268Google Scholar
  17. Breton C, Tersac M, Bervillé A (2006) Genetic diversity and gene flow between the wild olive (oleaster, Olea europaea L.) and the olive: several Plio-Pleistocene refuge zones in the Mediterranean basin suggested by simple sequence repeats analysis. J Biogeogr 33:1916–1928CrossRefGoogle Scholar
  18. Brown AHD (1989a) Core collections: a practical approach to genetic resources management. Genome 31:818–824CrossRefGoogle Scholar
  19. Brown AHD (1989b) The case for core collections. In: Brown AHD, Frankel OH, Marshal DR (eds) The use of plant genetic resources. University Cambridge Press, Cambridge, pp 136–156Google Scholar
  20. Caballero JM, Del Río C, Navarro C, Garcia-Fernandez MD, Morales J, Hermoso M, Del Olmo LA, Lopez F, Cera F, Ruiz G (2005) Ensayos compararivos en Andalucia. In: Rallo L, Barranco D, Caballero J, Martín A, Del Río C, Tous J, Trujillo I (eds) Variedades de olivo en España, vol 2, MAPA. Ediciones Mundi-Prensa and COI, Sevilla, pp 383–394Google Scholar
  21. Carriero F, Fontanazza G, Cellini F, Giorio G (2002) Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.). Theor Appl Genet 104:301–307PubMedCrossRefGoogle Scholar
  22. Chandra S, Huaman Z, Krishna SH, Ortiz R (2002) Optimal sampling strategy and core collection size of Andean tetraploid potato based on isozyme data: a simulation study. Theor Appl Genet 104:1325–1334PubMedCrossRefGoogle Scholar
  23. Cipriani G, Marrazzo MT, Marconi R, Cimato A, Testolin R (2002) Microsatellite markers isolated in olive are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars (Olea europaea L.). Theor Appl Genet 104:223–228PubMedCrossRefGoogle Scholar
  24. Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M, Meneghetti S, Frare E, Vignani R, Cresti M, Morgante M, Pezzotti M, Pé M, Testolin R (2010) The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture among varieties of different geographic origin. Theor Appl Genet 121:1569–1585PubMedCrossRefGoogle Scholar
  25. De la Rosa R, James C, Tobutt KR (2002) Isolation and characterization of polymorphic microsatellite in olive (Olea europaea L.) and their transferability to other genera in the Oleaceae. Mol Ecol 2:265–267CrossRefGoogle Scholar
  26. De la Rosa R, Angiolillo A, Guerrero C, Pellegrini M, Rallo L, Besnard G, Bervillé A, Martín A, Baldoni L (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106:1273–1282PubMedGoogle Scholar
  27. Del Río C, Caballero JM, Garcia-Fernandez MD (2005a) Rendimiento graso de Germoplasma de Córdoba. In: Rallo L, Barranco D, Caballero J, Martín A, Del Río C, Tous J, Trujillo I (eds) Variedades de olivo en España, vol 2, MAPA. Ediciones Mundi-Prensa and COI, Sevilla, pp 347–356Google Scholar
  28. Del Río C, Caballero JM, Garcia-Fernandez MD (2005b) Vigor (Banco de Germoplasma de Córdoba). In: Rallo L, Barranco D, Caballero J, Martín A, Del Río C, Tous J, Trujillo I (eds) Variedades de olivo en España, vol 2, MAPA. Ediciones Mundi-Prensa and COI, Sevilla, pp 247–256Google Scholar
  29. Dhanaraj AL, Rao EVVB, Swamy KRM, Bhat MG, Prasad DT, Sondur SN (2002) Using RAPDs to assess the diversity in Indian cashew (Anacardium accidentale L.). J Hort Sci Biotechnol 77:41–47Google Scholar
  30. Dice LR (1945) Measure of the amount of ecologic association between species. Ecology 1945(26):297–302CrossRefGoogle Scholar
  31. Escribano P, Viruel MA, Hormaza JI (2008) Comparison of different methods to sequence repeat markers. A case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species. Ann Appl Biol 153:25–32CrossRefGoogle Scholar
  32. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  33. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  34. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  35. Franco J, Crossa J, Taba S, Shands H (2005) A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci 45:1035–1044CrossRefGoogle Scholar
  36. Franco J, Crossa J, Warburton ML, Taba S (2006) Sampling strategies for conserving maize diversity when forming core subsets using genetic markers. Crop Sci 46:854–864CrossRefGoogle Scholar
  37. Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) MSTRAT: an algorithm for building germplasm core collections by maximizing allelic or phenotypic richness. J Hered 92:93–94PubMedCrossRefGoogle Scholar
  38. Hannachi H, Breton C, Msallem M, Ben El Hadj S, El Gazzah M, Bervillé A (2008) Differences between native and introduced cultivars as revealed by morphology of drupes, oil composition and SSR polymorphysm; a case study in Tunisia. Sci Hort 116:280–290CrossRefGoogle Scholar
  39. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity Arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25PubMedCrossRefGoogle Scholar
  40. Jing R, Vershinin A, Grzebyta J, Shaw P, Smýkal P, Marshall D, Ambrose MJ, Ellis TH, Flavell AJ (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10:44PubMedCrossRefGoogle Scholar
  41. Kim KW, Chung HK, Cho GT, Ma KH, Gwag CD, Kim TS, Cho EG, Park YJ (2007) PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets. Bioinformatics 23:2155–2162PubMedCrossRefGoogle Scholar
  42. Koehmstedt AM, Aradhya MK, Soleri D, Smith JL, Polito VS (2010) Molecular characterization of genetic diversity, structure and differentiation in the olive (Olea europaea L.) germplasm collection of the United States Departament of Agriculture. Genet Resour Crop Evol doi:  10.1007/s10722-010-9595-z
  43. Le Cunff L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon AF, Boursiquot JM, This P (2008) Construction of nested genetic core collections to optimise the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biol 8:31PubMedCrossRefGoogle Scholar
  44. Leigh FJ, Law JR, Lea VJ Donini P, Reeves JC (2005) A comparison of molecular markers and statistical tools for diversity and EDV studies. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the International Congress“In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution”, 27–31 May 2003, Bologna, Italy, pp. 349–363Google Scholar
  45. Lewontin RC (1972) The apportionment on human diversity. Evol Biol 6:381–398Google Scholar
  46. Liu K, Muse SV (2005) Powermarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  47. Liu K, Goodman M, Muse S, Stephen Smith J, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128PubMedGoogle Scholar
  48. Loureiro J, Rodriguez E, Costa A, Santos C (2007) Nuclear DNA content estimations in wild olive (Olea europaea L. ssp. europaea var. sylvestris Brot.) and Portuguese cultivars of O. europaea using flow cytometry. Genet Resour Crop Evol 54:21–25CrossRefGoogle Scholar
  49. Lumaret R, Ouazzani N, Michaud H, Vivier G, Deguilloux M, Di Giusto F (2004) Allozyme variation of oleaster populations (wild olive tree) (Olea europaea L.) in the Mediterranean basin. Heredity 92:343–351PubMedCrossRefGoogle Scholar
  50. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  51. Marita JM, Rodriguez JM, Nienhuis J (2000) Development of an algorithm identifying maximally diverse core collections. Genet Resour Crop Evol 47:515–526CrossRefGoogle Scholar
  52. McKhann HI, Carnilleri C, Berard A, Bataillon T, David JL, Reboud X, Le Corre V, Caloustian C, Gut IG, Brunel D (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38:193–202PubMedCrossRefGoogle Scholar
  53. Miranda C, Urrestarazu J, Santesteban LG, Royo JB, Uribina V (2010) Genetic diversity and structure in a collection of ancient Spanish pear cultivars assessed by microsatellite markers. J Am Soc Hort Sci 135:428–437Google Scholar
  54. Muzzalupo I, Stefanizzi F, Perri E (2009) Evaluation of olives cultivated in southern Italy by simple sequence repeat markers. HortScience 44:582–588Google Scholar
  55. Owen CA, Bita E, Banilas G, Hajjar SE, Sellianakis V, Aksoy U, Hepaksoy S, Chamoun R, Talhook SN, Metzidakis I, Hatzopoulos P, Kalaitzis P (2005) AFLP reveals sturctural details of genetic diversity within cultivated olive germplasm from eastern Mediterranean. Theor Appl Genet 110:1169–1176PubMedCrossRefGoogle Scholar
  56. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure from multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  57. Rallo L, Barranco D, Caballero JM, Del Río C, Martín A, Tous J, Trujillo I (2005) Las variedades de olivo cultivadas en España. Consejería de Agricultura y Pesca, Ministerio de Agricultura, Pesca y Alimentación and Ediciones Mundi-Prensa, MadridGoogle Scholar
  58. Rallo L, Barranco D, De la Rosa R, León L (2008) ‘Chiquitita’ Olive. HortScience 43:529–531Google Scholar
  59. Reale S, Doveri S, Díaz A, Angiolillo A, Lucentini L, Pilla F, Martín A, Donini P, Lee D (2006) SNP-based markers for discriminating olive (Olea europaea L.) cultivars. Genome 49:1193–1205PubMedCrossRefGoogle Scholar
  60. Richards CM, Volk GM, Reeves PA, Reilley AA, Henk D, Forsline PL, Aldwinckle HS (2009) Selection of stratified core sets representing wild apple (Malus sieversii). J Am Soc Hort Sci 134:228–235Google Scholar
  61. Rohlf FJ (2005) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.2. Setauket: Exeter SoftwareGoogle Scholar
  62. Ronfort J, Bataillon T, Santoni S, Delalande M, David JL, Prosperi JM (2006) Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collection foe studying naturally occurring variation in Medicago truncatula. BMC Plant Biol 6:28PubMedCrossRefGoogle Scholar
  63. Sabino-Gil F, Busconi M, Da Câmara-Machado A, Fogher C (2006) Microsatellite markers are powerful tools for discriminating among olive cultivars ans assigning them to geographically defined populations. Genome 49:1606–1615CrossRefGoogle Scholar
  64. Sansaloni CP, Petroli CD, Carling J, Hudson CJ, Steane DA, Myburg AA, Grattapaglia D, Vaillancourt RE, Kilian A (2010) A high density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus. Plant Meth 6:16CrossRefGoogle Scholar
  65. Sarri V, Baldoni L, Porceddu A, Cultrera NGM, Contento A, Frediani M, Belaj A, Trujillo I, Cionini PG (2006) Microsatellite markers are powerful tools for discriminating among olive cultivars and assigning them to geographically defined populations. Genome 49:1606–1615PubMedCrossRefGoogle Scholar
  66. SAS Institute (2004) SAS/STAT® 9.1 User’s Guide. CaryGoogle Scholar
  67. Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetic data analysis. Genetics and Biometry Laboratory, University of GenevaGoogle Scholar
  68. Schoen DJ, Brown AHD (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci U S A 90:10623–10627PubMedCrossRefGoogle Scholar
  69. Schoen DJ, Brown AHD (1995) Maximising genetic diversity in core collections of wild relatives of crop species. In: Hodgkin T, Bronw AHD, van Hintum ThJL, Morales EAV (eds) Core collections of plant genetic resources. Wiley, New York, pp 55–76Google Scholar
  70. Sefc KM, Lopes MS, Mendonça D, Rodriguez Dos Santos M, da Câmara L, Machado M, da Câmara MA (2000) Identification of SSR loci in olive (Olea europaea) and their characterization in Italian and Iberian olive trees. Mol Ecol 9:1171–1173PubMedCrossRefGoogle Scholar
  71. Shashidhara G, Hema MV, Koshy B, Farooqi AA (2003) Assessment of genetic diversity and identification of core collection in sandalwood germplasm using RAPDs. J Hort Sci 78:528–536Google Scholar
  72. Terral JF, Alonso N, Capdevila RBI, Chatti N, Fabre L, Fiorentino G, Marinval P, Jorda GP, Pradat B, Rovira N, Alibert P (2004) Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J Biogeogr 31:63–77CrossRefGoogle Scholar
  73. Trujillo I, Rallo L, Arus P (1995) Identifying olive cultivars by isozyme analysis. J Am Soc Hort Sci 120:318–324Google Scholar
  74. Upadhyaya HD, Bramiel PJ, Sube S (2001) Development of a chickpea core subset using geographic distribution and qualitative traits. Crop Sci 41:206–210CrossRefGoogle Scholar
  75. Van Hintum ThJL, Brown AHD, Spillane C, Hodgkin (2000) Core collections of plant genetic resources. IPGRI Technical Bulletin 3Google Scholar
  76. Van Treuren R, Tchoudinova I, Van Soest L, Van Hintum T (2006) Marker-assisted acquisition and core collection formation: a case study in barley using AFLPs and pedigree data. Genet Resour Crop Evol 53:43–52CrossRefGoogle Scholar
  77. Volk GM, Richards CM, Reilley AD, Henk AD, Forsline PL, Aldwinckle HS (2005) Ex situ conservation of vegetatively propagated species: development of a seed-based core collection for Malus sieversii. J Am Soc Hort Sci 130:203–210Google Scholar
  78. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Angjelina Belaj
    • 1
    Email author
  • Maria del Carmen Dominguez-García
    • 1
  • Sergio Gustavo Atienza
    • 2
  • Nieves Martín Urdíroz
    • 3
  • Raúl De la Rosa
    • 1
  • Zlatko Satovic
    • 4
  • Antonio Martín
    • 2
  • Andrzej Kilian
    • 5
  • Isabel Trujillo
    • 3
  • Victoriano Valpuesta
    • 6
  • Carmen Del Río
    • 1
  1. 1.IFAPA CentroAlameda del ObispoCordobaSpain
  2. 2.Departamento de Mejora GenéticaInstituto de Agricultura Sostenible, IAS-CSICCordobaSpain
  3. 3.Departamento de AgronomíaE.T.S.I.A.M. Universidad de CórdobaCordobaSpain
  4. 4.Faculty of AgricultureUniversity of ZagrebZagrebCroatia
  5. 5.DArT P/LCanberraAustralia
  6. 6.Departamento de Biología Molecular y Bioquímica, Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations