Skip to main content
Log in

A candidate gene for lignin composition in Eucalyptus: cinnamoyl-CoA reductase (CCR)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Lignin content and composition are considered as mandatory traits of eucalyptus breeding programs, especially for pulp, paper, and bioenergy production. In this article, we used 33 Eucalyptus urophylla full-sib families of an 8 × 8 factorial design to provide estimates of genetic parameters for lignin- and growth-related traits. Secondly, from the sequencing of the 16 unrelated founders, we described the nucleotide and haplotype variability of cinnamoyl-CoA reductase (CCR), a candidate gene for lignin-related traits encoding the cinnamoyl-CoA reductase. Finally, we tested the association between CCR polymorphisms and trait variation using a mixed linear model. A high value of narrow sense heritability was obtained for lignin content (h² = 0.85) and S/G ratio (h² = 0.62) indicating that these traits are under strong genetic control. High levels of nucleotide (θπ = 0.0131) and haplotype (Hd = 0.958) diversity were detected for CCR. From an initial set of 152 biallelic single nucleotide polymorphisms (SNPs), a subset of 65 nonredundant loci was selected. Three intronic SNPs were found to be associated to the variation of S/G ratio after multiple testing correction. In the line of what has been obtained in forest trees, these SNPs explained between 2.45% and 2.87% of the genetic variance of the trait. This study demonstrates the interest of the candidate gene approach for quantitative trait nucleotide detection in Eucalyptus and paves the way to gene assisted selection of lignin composition in E. urophylla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2009) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  PubMed  Google Scholar 

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61(3):221–294

    Article  PubMed  CAS  Google Scholar 

  • Bailleres H, Davrieus F, Pichavant FH (2002) Near infrared analysis as a tool for rapid screening of some major wood characteristics in a eucalyptus breeding program. Annals of Forest Science 59(5–6):479–490

    Article  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Bose SK, Francis RC, Govender M, Bush T, Spark A (2009) Lignin content versus syringyl to guaiacyl ratio amongst poplars. Bioresour Technol 100(4):1628–1633

    Article  PubMed  CAS  Google Scholar 

  • Campbell MM, Sederoff RR (1996) Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). Plant Physiol 110(1):3–13

    PubMed  CAS  Google Scholar 

  • Crisp M, Cook L, Steane D (2004) Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Phil Trans Roy Soc Lond B Biol Sci 359(1450):1551–1571

    Article  Google Scholar 

  • De Melis LE, Whiteman PH, Stevenson TW (1999) Isolation and characterisation of a cDNA clone encoding cinnamyl alcohol dehydrogenase in Eucalyptus globulus Labill. Plant Sci 143(2):173–182

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Feuillet C, Boudet AM, Grimapettenati J (1993) Nucleotide sequence of a cDNA encoding cinnamyl alcohol dehydrogenase from Eucalyptus. Plant Physiol 103(4):1447

    Article  PubMed  CAS  Google Scholar 

  • Freeman JS, Whittock SP, Potts BM, Vaillancourt RE (2009) QTL influencing growth and wood properties in Eucalyptus globulus. Tree Genet Genome 5(4):713–722

    Article  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R (2002) ASReml user guide release 1.0. VSN International Ltd, Hemel Hempstead, HP1 1ES, UK

  • Gominho J, Rodrigues J, Almeida MH, Leal A, Cotterill PP, Pereira H (1997). Assessment of pulp yield and lignin content in a first-generation clonal testing of Eucalyptus globulus in Portugal. Proceedings of the IUFRO Conference on Silviculture and Improvement of Eucalypts, Salvador, Brazil, August 24–29: 84–89

  • González-Martínez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L. I. Wood property traits. Genetics 175(1):399–409

    Article  PubMed  Google Scholar 

  • Grima-Pettenati J, Feuillet C, Goffner D, Borderies G, Boudet AM (1993) Molecular cloning and expression of a Eucalyptus gunnii cDNA clone encoding cinnamyl alcohol dehydrogenase. Plant MolBiol 21(6):1085–1095

    CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hannrup B, Cahalan C, Chantre G, Grabner M, Karlsson B, Le Bayon I et al (2004) Genetic parameters of growth and wood quality traits in Picea abies. Scand J For Res 19(1):14–29

    Article  Google Scholar 

  • Harakava R (2005) Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus. Genet Mol Biol 28(3):601–607

    Article  CAS  Google Scholar 

  • Hawkins S, Goffner D, Boudet AM (1994) Cinnamyl alcohol dehydrogenase polymorphism and its potential role in the control of lignin heterogeneity. Acta Horticult 381:280–286

    CAS  Google Scholar 

  • Hein PRG, Lima JT, Chaix G (2010) Effects of sample preparation on NIR spectroscopic estimation of chemical properties of Eucalyptus urophylla S.T. Blake wood. Holzforschung 64(1):45–54

    Article  CAS  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD et al (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17(8):808–812

    Article  PubMed  CAS  Google Scholar 

  • Hull J, Campino S, Rowlands K, Chan MS, Copley RR, Taylor MS et al (2007) Identification of common genetic variation that modulates alternative splicing. Plos Genet 3(6):1009–1018

    Article  CAS  Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5(3):224–229

    Article  PubMed  CAS  Google Scholar 

  • Kirst M, Myburg AA, De Leon JPG, Kirst ME, Scott J, Sederoff R (2004) Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiol 135(4):2368–2378

    Article  PubMed  CAS  Google Scholar 

  • Kulheim C, Yeoh SH, Maintz J, Foley WJ, Moran GF (2009) Comparative SNP diversity among four eucalyptus species for genes from secondary metabolite biosynthetic pathways. BMC Genomics. doi:10.1186/1471-2164-10-452

  • Lacombe E, Hawkins S, VanDoorsselaere J, Piquemal J, Goffner D, Poeydomenge O et al (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11(3):429–441

    Article  PubMed  CAS  Google Scholar 

  • Lacombe E, Van Doorsselaere J, Boerjan W, Boudet AM, Grima-Pettenati J (2000) Characterization of cis-elements required for vascular expression of the Cinnamoyl CoA Reductase gene and for protein–DNA complex formation. Plant J 23:663–676

    Article  PubMed  CAS  Google Scholar 

  • Ladiges PY, Udovicic F, Nelson G (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. J Biogeogr 30:989–998

    Article  Google Scholar 

  • Leplé JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B et al (2007) Downregulation of cinnamoyl-coenzyme a reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19(11):3669–3691

    Article  PubMed  Google Scholar 

  • Li L, Zhou YH, Cheng XF, Sun JY, Marita JM, Ralph J et al (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci U S A 100(8):4939–4944

    Article  PubMed  CAS  Google Scholar 

  • Martin B, Cossalter C (1976a) Les Eucalyptus des îles de la Sonde. Partie 1. Bois For Trop 165:3–20

    Google Scholar 

  • Martin B, Cossalter C (1976b) Les Eucalyptus des îles de la Sonde. Partie 2. Bois For Trop 166:3–22

    Google Scholar 

  • Martin B, Cossalter C (1976c) Les Eucalyptus des îles de la Sonde. Partie 3. Bois For Trop 167:3–24

    Google Scholar 

  • Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9(7):325–330

    Article  PubMed  CAS  Google Scholar 

  • Novaes E, Osorio L, Drost DR, Miles BL, Boaventura-Novaes CRD, Benedict C et al (2009) Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytol 182(4):878–890

    Article  PubMed  CAS  Google Scholar 

  • O’Connell A, Holt K, Piquemal J, Grima-Pettenati J, Boudet A, Pollet B et al (2002) Improved paper pulp from plants with suppressed cinnamoyl-CoA reductase or cinnamyl alcohol dehydrogenase. Transgenic Res 11(5):495–503

    Article  PubMed  Google Scholar 

  • Paux E, Carocha V, Marques C, de Sousa AM, Borralho N, Sivadon P et al (2005) Transcript profiling of Eucalyptus xylem genes during tension wood formation. New Phytol 167(1):89–100

    Article  PubMed  CAS  Google Scholar 

  • Payn KG, Dvorak WS, Janse BJH, Myburg AA (2008) Microsatellite diversity and genetic structure of the commercially important tropical tree species Eucalyptus urophylla, endemic to seven islands in eastern Indonesia. Tree Genetics Genome 4(3):519–530

    Article  Google Scholar 

  • Peter G, Neale D (2004) Molecular basis for the evolution of xylem lignification. Curr Opin Plant Biol 7(6):737–742

    Article  PubMed  CAS  Google Scholar 

  • Piquemal J, Lapierre C, Myton K, O’Connell A, Schuch W, Grima-Pettenati J et al (1998) Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13(1):71–83

    Article  CAS  Google Scholar 

  • Poeydomenge O, Boudet AM, Grimapettenati J (1994) A cDNA encoding S-adenosyl-l-methionine: caffeic Acid 3-O-methyltransferase from Eucalyptus. Plant Physiol 105(2):749–750

    Article  PubMed  CAS  Google Scholar 

  • Poke FS, Vaillancourt RE, Elliott RC, Reid JB (2003) Sequence variation in two lignin biosynthesis genes, cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase 2 (CAD2). Mol Breed 12(2):107–118

    Article  CAS  Google Scholar 

  • Poke FS, Potts BM, Vaillancourt RE, Raymond CA (2006) Genetic parameters for lignin, extractives and decay in Eucalyptus globulus. Ann For Sci 63(8):813–821

    Article  CAS  Google Scholar 

  • Pot D, Chantre G, Rozenberg P, Rodrigues JC, Jones GL, Pereira H et al (2002) Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait.). Ann For Sci 59(5–6):563–575

    Article  Google Scholar 

  • Ralph J, Hatfield RD, Piquemal J, Yahiaoui N, Pean M, Lapierre C et al (1998) NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamyl-alcohol dehydrogenase and cinnamoyl-CoA reductase. Proc Natl Acad Sci U S A 95(22):12803–12808

    Article  PubMed  CAS  Google Scholar 

  • Raymond CA (2002) Genetics of Eucalyptus wood properties. Ann For Sci 59(5–6):525–531

    Article  Google Scholar 

  • Rengel D, San Clemente H, Servant F, Ladouce N, Paux E, Wincker P et al (2009) A new genomic resource dedicated to wood formation in Eucalyptus. BMC Plant Biology. doi:10.1186/1471-2229-9-36

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics (Oxford, England) 19(18):2496–2497

    Article  CAS  Google Scholar 

  • Savidge RA (2000) Biochemistry of seasonal cambial growth and wood formation—an overview of the challenges. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. BIOS Scientific, Oxford, UK, pp 1–30

    Google Scholar 

  • Slotte T, Huang HR, Holm K, Ceplitis A, Onge KS, Chen J et al (2009) Splicing variation at a FLOWERING LOCUS C homeolog is associated with flowering time variation in the tetraploid Capsella bursa-pastoris. Genetics 183(1):337–345

    Article  PubMed  CAS  Google Scholar 

  • Sykes R, Li BL, Isik F, Kadla J, Chang HM (2006) Genetic variation and genotype by environment interactions of juvenile wood chemical properties in Pinus taeda L. Ann For Sci 63(8):897–904

    Article  CAS  Google Scholar 

  • Thamarus K, Groom K, Bradley A, Raymond CA, Schimleck LR, Williams ER et al (2004) Identification of quantitative trait loci for wood and fibre properties in two full-sib pedigrees of Eucalyptus globulus. Theor Appl Genet 109(4):856–864

    Article  PubMed  CAS  Google Scholar 

  • Thumma BR, Nolan MR, Evans R, Moran GF (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171(3):1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Thumma BR, Matheson BA, Zhang DQ, Meeske C, Meder R, Downes GM et al (2009) Identification of a cis-acting regulatory polymorphism in a eucalypt COBRA-like gene affecting cellulose content. Genetics 183(3):1153–1164

    Article  PubMed  CAS  Google Scholar 

  • Thumma BR, Southerton SG, Bell JC, Owen JV, Henery ML, Moran GF (2010) Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens. Tree Genetics Genome 6(2):305–317

    Article  Google Scholar 

  • Tripiana V, Bourgeois M, Verhaegen D, Vigneron P, Bouvet JM (2007) Combining microsatellites, growth, and adaptive traits for managing in situ genetic resources of Eucalyptus urophylla. Can J Forest Res 37(4):773–785

    Article  Google Scholar 

  • Wu RL, Remington DL, MacKay JJ, McKeand SE, O’Malley DM (1999) Average effect of a mutation in lignin biosynthesis in loblolly pine. Theor Appl Genet 99(3–4):705–710

    Article  CAS  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This article is a part of Eric Mandrou’s PhD thesis supervised by Jean-Marc Gion and Christophe Plomion. EM was supported by a CIFRE contract between Vallourec CEV and CIRAD. This research was also supported by grants from Vallourec (Services agreement 2006 between CIRAD and VMB), from Bureau des Ressources Génétiques (2005_2006 N°25), from Agence Nationale de la Recherche, Plateformes Technologiques du Vivant (BOOST-SNP project, 07PFTV002), Aquitaine Région with FEDER ABIOGEN project (N° Presage 32973) and CIRAD. The field experiments were carried out at the CRDPI station (Pointe-Noire, Republic of Congo). The founders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors thank two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marc Gion.

Additional information

Communicated by W. Boerjan

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

DOC 430 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandrou, E., Hein, P.R.G., Villar, E. et al. A candidate gene for lignin composition in Eucalyptus: cinnamoyl-CoA reductase (CCR). Tree Genetics & Genomes 8, 353–364 (2012). https://doi.org/10.1007/s11295-011-0446-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0446-7

Keywords

Navigation