Skip to main content

Advertisement

Log in

Strategies for conservation for disturbed Prosopis alba (Leguminosae, Mimosoidae) forests based on mating system and pollen dispersal parameters

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Prosopis species forests in Argentina are increasingly fragmented in the last years mainly by the deforestation activity without any reforestation strategy, the establishment of different crop plantations, and natural fires. The consequence of habitat fragmentation on the genetic potential of Prosopis alba requires a fine-scale analysis of population structure, in particular mating system and pollen dispersal. By means of short sequences repeats, we analyzed a fragmented population of this species in Santiago del Estero (Argentina). Most genetic variation was observed among families within zones (65.5%), whereas the lowest proportion corresponded to the differentiation among zones (2.8%). The fine analysis of structure at family level suggests that this population is complete outcrosser and there is a low but significant biparental inbreeding. Outcrossing rates differ among mother plants and the proportion of full sibs within mother plants ranged from 64% for seeds proceeding from the same pod to 10% for seeds from different pods. The average pollen dispersal distance was estimated to be among 5.36 and 30.92 m by using the KinDist or TwoGener approach. About seven pollen donors are siring each progeny array and the number of seed trees necessary for seed collection aiming to retain an effective population size of 100 was estimated in 16–39 individuals depending on the relatedness estimator used. Pollen and seed dispersal would be limited, what determines the need of conserving short distant patches to avoid the effects of inbreeding and drift within populations as a consequence of intensive use resource for agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agapow PM, Burt A (2001) Indices of multilocus linkage disequilibrium. Mol Ecol Notes 1:101–102

    Article  CAS  Google Scholar 

  • Aguilar R, Quesada M, Ashworth L, Yvonne Herrerias D, Lobo J (2008) Genetic consequences of hábitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188

    Article  PubMed  Google Scholar 

  • Austerlitz F, Smouse PE (2001) Two-generation analysis of pollen flow across a landscape. II. Relation between FFT, pollen dispersal and interfemale distance. Genetics 157:851–857

    PubMed  CAS  Google Scholar 

  • Austerlitz F, Smouse PE (2002) Two-generation analysis of pollen flow across a landscape. IV. Estimating the dispersal parameter. Genetics 161:355–363

    PubMed  Google Scholar 

  • Bessega C, Ferreyra L, Julio N, Montoya S, Saidman BO, Vilardi JC (2000) Mating system parameters in species of genus Prosopis (Leguminosae). Hereditas 132(1):19–27

    Article  PubMed  CAS  Google Scholar 

  • Bessega C, Saidman B, Darquier MR, Ewens M, Sánchez L, Rozenberg P, Vilardi JC (2009) Consistency between marker- and genealogy-based heritability estimates in an experimental stand of Prosopis alba (Leguminosae). Am J Botany 96:458–465

    Article  Google Scholar 

  • Brown JR, Archer S (1987) Woody plants seed dispersal and gap formation in North America subtropical savanna woodland: the role of domestic herbivores. Vegetatio 73:73–80

    Article  Google Scholar 

  • Burkart A (1976) A monograph of the genus Prosopis (Leguminosae subfam. Mimosoidae). Journal Arnold Arboretum 57:219–249

    Google Scholar 

  • Cascante A, Quesada M, Lobo JJ, Fuchs EA (2002) Effects of dry forest fragmentation on the reproductive success and genetic structure of the tree Samanea saman. Conservation Biology 16:137–147

    Article  Google Scholar 

  • Cockerham CC (1969) Variance of gene frequencies. Evolution 23:72–84

    Article  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to populations genetics theory. Harper and Row, London

    Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria. ISBN 3-900051-07-0. Available from: http://www.R-project.org

  • Dick CW, Hardy OJ, Jones FA, Petit RJ (2008) Spatial scales of pollen and seed-mediated gene flow in tropical rainforest trees. Tropical Plant Biol 1:20–33

    Article  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species geographical ranges: the central marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • FAO (2007) Situación de los Bosques del Mundo, Roma, Italia. http://www.fao.org/docrep/009/a0773s/a0773s00.htm

  • Fernández OA, Busso CA (1997) Arid and semi-arid rangelands: two thirds of Argentina. RALA Report: 200.

  • Ferreyra LI, Bessega C, Vilardi JC, Saidman BO (2004) First report on RAPDS patterns able to differentiate some Argentinean species of Section Algarobia (Prosopis, Leguminosae). Genetica 121(1):33–42

    Article  PubMed  CAS  Google Scholar 

  • Ferreyra LI, Bessega C, Vilardi JC, Saidman BO (2007) Consistency of population genetics parameters estimated from isozyme and RAPDs dataset in species of genus Prosopis (Leguminosae, Mimosoideae). Genetica 131:217–230

    Article  PubMed  CAS  Google Scholar 

  • Ferreyra LI, Vilardi JC, Tosto D, Julio N, Saidman BO (2010) Adaptive genetic diversity and population structure of the “algarrobo” [Prosopis chilensis (Molina) Stuntz] analysed by RAPD and isozyme markers. Eur J Forest Res 129:1011–1025. doi:10.1007/s10342-010-0386-z

    Article  CAS  Google Scholar 

  • Fuchs EJ, Hamrick JL (2011) Mating system and pollen flow between remnant populations of the endargered tropical tree, Guaiacum sanctum (Zygophyllaceae). Conserv Genet 12:175–185

    Article  Google Scholar 

  • Genisse J, Palacios RA, HOC PS, Carrizo R, Moffat L, Mom MP, Agullo MA, Picca (1990) Observaciones sobre la biologia floral de Prosopis (Leguminosae, Mimosoidae). I1 Fases florales y visitantes en el distrito Chaquefio Serrano. Danviniana 30:71–85

    Google Scholar 

  • Goudet J (2005) Hierfstat, a package for R to compute and test hierarchical F statistics. Mol Ecol Notes 5: 184–186. http://www.unil.ch/popgen/softwares/hierfstat.htm.

  • Goudet J, Raymond M, DeMeeus T, Rousset F (1995) Testing differentiation in diploid populations. Genetics 144:1933–1940

    Google Scholar 

  • Hafez ESE (1962) The behavior of domestic animals. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Hamrick JL (1994) Genetic diversity and conservation in tropical forest. In: Drysdale RM, JS Yapa A (eds) Proceedings on International Symposium on Genetic Conservation and Prosuction of Tropical Forest Tree Seed. Asia–Canada Forest Tree Seed Centre, Muack-Lek, Saraubi, Thailand. pp 1–9.

  • Hamrick JL (2004) Response of forest tree to global environmental changes. Forrest Ecol and Manag 197:323–335

    Article  Google Scholar 

  • Hardy O, Vekemans X (2002) SPAGeDI: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Jump AS, Penuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci USA 103:8096–8100

    Article  PubMed  CAS  Google Scholar 

  • Keys RN (1993) Mating systems and pollination biology of velvet mesquite (Prosopis velutina Wooten). Thesis dissertation. University of Arizona

  • Keys RN, Smith S (1994) Mating system parameters and population genetic structure in pioneer populations of Prosopis velutina (Leguminosae). Am J Bot 81:1013–1020

    Article  Google Scholar 

  • Kramer AT, Ison JL, Ashley MV, Howe HF (2008) The paradox of forest fragmentation genetics. Conserv Biol 22:878–885

    Article  PubMed  Google Scholar 

  • Lander TA, Boshier DH, Harris SA (2010) Fragmented but not isolated: contribution of single trees, small patches and long-distance pollen flow to genetic connectivity for Gomortega keule, an endangered Chilean tree. Biol Conserv 143(11):2583–2590. doi:10.1016/j.biocon.2010.06.028

    Article  Google Scholar 

  • Levin DA, Kerster HW (1974) Gene flow in seed plants. Evol Biol 7:139–220

    Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotoria officinalis (Rubiaceae). Am J Bot 82:1430–1425

    Article  Google Scholar 

  • Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicts theory for neotropical trees. Heredity 95:255–273

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analyses of quantitative traits. Sinauer, Sunderland, MA

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Mares MA, Enders FA, Kingsolver JM, Neff JL, Simpson BB (1977). In: Simpson BB (ed) Mesquite: its biology in two desert ecosystems, US/IBP synthesis Series. Hutchinson and Ross: Stroudsburg 7: 124–149

  • Mottura MC, Finkeldey R, Verga AR, Gailing O (2005) Development and characterization of microsatellite markers for Prosopis chilensis and Prosopis flexuosa and cross-species amplification. Mol Ecol Notes 5:487–489

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pometti CL, Pizzo B, Brunetti M, Macchioni N, Ewens M, Saidman BO (2009) Argentinean native wood species: physical and mechanical characterization of some Prosopis species and Acacia aroma (Leguminosae; Mimosoideae). Bioresour Technol 100(6):1999–2004

    Article  PubMed  CAS  Google Scholar 

  • Pometti CL, Palanti S, Pizzo B, Charpentier JP, Boizot N, ResioC SBO (2010) Durability of five native Argentine wood species of the genera Prosopis and Acacia decayed by rot fungi and its relationship with extractive content. Biodegradation 21(5):753–760

    Article  PubMed  CAS  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Reynolds HG (1954) Some interrelations of the Merriam kangaroo rat to velvet mesquite. J Range Manag 7:176–180

    Article  Google Scholar 

  • Ritland K (1989) Correlated matings in the partial selfer Mimulus guttatus. Evolution 43:848–859

    Article  Google Scholar 

  • Ritland K (1990) A series of FORTRAN computer programs for estimating plant mating systems. J Hered 81:235–237

    Google Scholar 

  • Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185

    Article  Google Scholar 

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228

    Article  PubMed  Google Scholar 

  • Ritland K, Jain SK (1981) A model for the estimation of outcrossing rate and gene frequencies using n independent loci. Heredity 47:35–52

    Article  Google Scholar 

  • Robledo-Arnuncio JJ, Austerlitz F, Smouse PE (2006) A new indirect method of estimating the pollen dispersal curve, independently of effective density. Genetics 173:1033–1045

    Article  PubMed  CAS  Google Scholar 

  • Robledo-Arnuncio JJ, Austerlitz F, Smouse PE (2007) POLDISP: a software package for indirect estimation of contemporary pollen dispersal. Mol Ecol Notes 7:763–766

    Article  Google Scholar 

  • Roig FA (1993) Aportes a la Etnobotánica del Genero Prosopis. In: Contribuciones Mendocinas a la quinta Reuni6n Regional para América Latina y el Caribe de la Red de Forestación del CIID. Unidades de Botánica y Fisiología vegetal IADIZA. pp 99–121

  • Saidman BO, Vilardi JC (1993) Genetic variability and germplasm conservation in the genus Prosopis. In: Puri S (ed) Nursery technology of forest tree species of arid and semiarid regions. Winrock–Oxford and IBH, New Delhi, pp 187–198

  • Sebben AM (2006) Sistema de reproduccion en species arboreas tropicales e suas implicancacoes para la selecao de arvores matrized para reforestamentos ambientais. In: Higa AR, Silva LD (eds) Pomares de sementes en especies forestais nativas. FUPEF, Curitiba, Brasil, pp 93–138

    Google Scholar 

  • Secretaría de Ambiente y Desarrollo Sustentable de la Nación (2004) Dirección de Bosques. Unidad de Manejo del Sistema de Evaluación Forestal, Informe sobre deforestación en Argentina

    Google Scholar 

  • Smouse P, Dyer RJ, Westfall RD, Sork VL (2001) Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution 55:260–271

    PubMed  CAS  Google Scholar 

  • Sork VL, Smouse PE (2006) Genetic analysis of landscape connectivity in tree populations. Landscape Ecol 21:821–836

    Article  Google Scholar 

  • Squillace AE (1974) Average genetic correlations among offspring from open-pollinated forest trees. Silvae Genetica 23:149–156

    Google Scholar 

  • Verdes P (2007) Micropropagación de Prosopis caldenia BURK.: estado actual y perspectives. Revista Científica Agropecuaria 11(1):45–51

    Google Scholar 

  • Wood SN (2001) mgcv: GAMs and generalized ridge regression for R. R News 1(2):20–25

    Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by funding from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) PIP 11220090100147 and Universidad de Buenos Aires (EX 201 and 20020100100008) given to JCV and BOS. A special thanks to the Lic. Ariel Guionet from the Servicio de Secuenciación y Genotipificado from Departamento de Ecología Genética y Evolución, FCEyN, UBA.

Ethical standards

In order to fulfill the objectives proposed, the experiments conducted comply with the current Argentine laws and all the trials were made without disturbing the natural ecosystem taking into consideration the current legislation in the country. For the experimental laboratory practice, done at Facultad de Ciencias Exactas y Naturales (Universidad de Buenos Aires), we followed the recommendations from Servicio de Higiene y Seguridad (SHyS, FCEyN, UBA).

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bessega.

Additional information

Communicated by P. Ingvarsson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessega, C., Pometti, C.L., Ewens, M. et al. Strategies for conservation for disturbed Prosopis alba (Leguminosae, Mimosoidae) forests based on mating system and pollen dispersal parameters. Tree Genetics & Genomes 8, 277–288 (2012). https://doi.org/10.1007/s11295-011-0439-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0439-6

Keywords

Navigation