Skip to main content

Nuclear genetic markers indicate Danish origin of the Norwegian beech (Fagus sylvatica L.) populations established in 500–1,000 AD

Abstract

The northernmost range of beech (Fagus sylvatica L.) is in southern Norway and consists of two distinct and isolated distributions, a single population at Seim in West Norway and several adjacent populations in Vestfold, East Norway. The modest beech pollen deposits beyond these main distributions suggest that the Norwegian beech distribution has never been an extension of the south Scandinavian range. We used genetic markers and historical sources to trace the ancestor populations for the beech at Seim and Vestfold, hypothesising Denmark as the most likely source. Nuclear inter-simple sequence repeat markers, amplified by polymerase chain reaction (PCR), were applied to estimate genetic distances between beech populations in Norway, England and Denmark. The variation in chloroplast DNA polymorphism was estimated using PCR-restriction fragment length polymorphism. The nuclear genetic data indicate Denmark as a source for the beech in Norway, although the data are less certain in the case of Seim than in that of Vestfold. The populations from South England were genetically different from most Scandinavian populations. The genetic variation within Norwegian populations was only slightly lower than that of the English and Danish populations, questioning birds as vectors for dispersal. Thus, the pollen data and our results are in accordance with the intentional introduction and documented human migrations across Skagerrak before and during the Viking Age.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aizawa M, Yoshimaru H, Saito H, Katsuki T, Kawahara T, Kitamura K, Shi F, Sabirov R, Kaji M (2009) Range-wide genetic structure in a north-east Asian spruce (Picea jezoensis) determined using nuclear microsatellite markers. J Biogeogr 36:996–1007

    Article  Google Scholar 

  2. Austerlitz F, Mariette S, Machon N, Gouyon P-H, Godelle B (2000) Effects of colonisation processes on genetic diversity: differences between annual plants and tree species. Genetics 154:1309–1321

    PubMed  CAS  Google Scholar 

  3. Arcade A, Anselin F, Rampant PF, Lesage MC, Paques LE, Prat D (2000) Application of AFLP, RAPD and ISSR markers to genetic mapping of European larch and Japanese larch. Theor Appl Genet 100:299–307

    Article  CAS  Google Scholar 

  4. Bately J (2007) Text and translation: the three parts of the known world and the geography of Europe north of the Danube according to Orosius' Historiae and its Old English version. In: Bately J, Englert A (eds) Othere's voyages, a late 9th-century account of voyages along the coasts of Norway and Denmark and its cultural context. Viking ship Museum, Roskilde, pp 46–47

    Google Scholar 

  5. Benz P-G (1988) Norsk fuglehåndbok. Aschehoug, Oslo

    Google Scholar 

  6. Björkman L (1996) Long-term population dynamics of Fagus sylvatica at the northern limits of its distribution in southern Sweden: a paleoecological study. Holocene 6:225–234

    Article  Google Scholar 

  7. Björkman L (1999) The establishment of Fagus sylvatica at the stand scale in southern Sweden. Holocene 9:237–245

    Article  Google Scholar 

  8. Bonde N, Christensen AE (1993) Dendrochronological dating of the Viking Age ship burial at Oseberg, Gokstad and Tune, Norway. Antiquity 67:575–583

    Google Scholar 

  9. Bradshaw RHW (2004) Past anthropogenic influence on European forests and some possible genetic consequences. For Ecol Manage 197:203–212

    Article  Google Scholar 

  10. Bradshaw RHW, Lindbladh M (2005) Regional spread and stand-scale establishment of Fagus sylvatica and Picea abies in Scandinavia. Ecology 86:1679–1686

    Article  Google Scholar 

  11. Comps B, Gömöry D, Letouzey J, Thiebaut B, Petit RJ (2001) Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics 157:389–397

    PubMed  CAS  Google Scholar 

  12. Danielsen A (1970) Pollen-analytical late Quaternary studies in the Ra district of Østfold, southeastern Norway. Årbok for Universitetet i Bergen (1969, no. 14), Norwegian University Press

  13. Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 1:129–131

    Article  Google Scholar 

  14. Demesure B, Comps B, Petit RJ (1996) Chloroplast DNA phylogeography of the common beech (Fagus sylvatica L) in Europe. Evolution 50:2515–2520

    Article  CAS  Google Scholar 

  15. Dumolin-Lapegue S, Pemonge MH, Petit RJ (1997) An enlarged set of consensus primers for the study of organelle DNA in plants. Mol Ecol 4:393–397

    Article  Google Scholar 

  16. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species' geographic ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    PubMed  Article  CAS  Google Scholar 

  17. EUFORGEN (2009) Distribution map of beech (Fagus sylvatica). http://www.euforgen.org/distribution_maps.html, accessed 18 November 2010

  18. Fægri K (1954) On age and origin of the beech forest (Fagus sylvatica L) at Lygrefjorden, near Bergen (Norway). Danm Geol Unders II rk 80:230–249

    Google Scholar 

  19. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  20. Giesecke T, Hickler T, Kunkel T, Sykes MT, Bradshaw RHW (2007) Towards an understanding of the Holocene distribution of Fagus sylvatica L. J Biogeogr 34:118–131

    Article  Google Scholar 

  21. Godinho R, Crespo EG, Ferrand N (2008) The limits of the mtDNA phylogeography: complex patterns of population history in highly structured Iberian lizard only revealed by the use of nuclear markers. Mol Ecol 17:4670–4683

    PubMed  Article  CAS  Google Scholar 

  22. Gömöry D, Paule L, Shvadchak IM, Popescu F, Suskowska M, Hynek V, Longauer R (2003) Spatial patterns of the genetic differentiation in European beech (Fagus sylvatica L) at allozyme loci in the Carpathians and the adjacent regions. Silvae Genet 52:78–83

    Google Scholar 

  23. Grivet D, Heinze B, Vendramin GG, Petit RJ (2001) Genome walking with consensus primers: application to the large single copy region of chloroplast DNA. Mol Ecol Notes 1:345–349

    Article  CAS  Google Scholar 

  24. Hafsten U (1956) Pollen-analytical investigations on the late Quaternary development in the inner Oslofjord area. Årbok for Universitetet i Bergen, AS John Griegs trykkeri

    Google Scholar 

  25. Hamrick JL, Nason JD (1996) Consequences of dispersal in plants. In: Rhodes E, Chesser RK, Smith MH (eds) Population dynamics in ecological space and time. University of Chicago Press, Chicago

    Google Scholar 

  26. Henningsmoen KE (1988) The beech forest in Larvik—a pollen analytic investigation. Blyttia 46:203–207

    Google Scholar 

  27. Hewitt GM (1999) Post-glacial re-colonisation of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  28. Hilfiker K, Gugerli F, Schütz J-P, Rotach P, Holdegger R (2004) Low RAPD variation and female-based sex ratio indicate genetic drift in small populations of the dioecious conifer Taxus baccata in Switzerland. Conservat Genet 5:357–365

    Article  CAS  Google Scholar 

  29. Holsinger KE, Lewis PO (2003) Software for analysis of geographic structure in genetic data. Hickory v 0.8. http://darwin.eeb.uconn.edu/hickory/software.html, accessed 18 November 2010

  30. Holsinger KE, Wallace LE (2004) Bayesian approaches for the analysis of population genetic structure: an example from Platanthera leucophaea (Orchidaceae). Mol Ecol 13:887–894

    PubMed  Article  Google Scholar 

  31. Höltken AM, Tähtinen J, Pappinen A (2003) Effects of discontinuous marginal habitats on the genetic structure of common ash (Fraxinus excelsior L.). Silvae Genet 52:206–212

    Google Scholar 

  32. Hultén E (1971) Atlas of the distribution of vascular plants in northwestern Europe. Generalstabens Litagrafiska Anstalts Förlag, Stockholm

    Google Scholar 

  33. Hultén E, Fries M (1986) Atlas of North European vascular plants north of the Tropic of Cancer. Koeltz Scientific Books, Königstein

    Google Scholar 

  34. Ilkjær J (2000) Den første Norgeshistorien. Illerupfunnet: Ny innsikt i skandinavisk romertid. Kulturhistorisk Forlag AS

  35. Jerpåsen GB (1996) Gunnerød En arkeologisk landskapsanalyse Varia 35. Universitetets Oldsaksamling, Oslo

    Google Scholar 

  36. Johnson WC, Adkisson CS, Crow TR, Dixon MD (1997) Nut caching by blue jays (Cyanocitta cristata L.): implications for tree demography. Am Midl Nat 138:357–370

    Article  Google Scholar 

  37. Jump AS, Penuelas J (2007) Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvatica. Mol Ecol 16:925–936

    PubMed  Article  CAS  Google Scholar 

  38. Kalinowski ST (2009) How well do evolutionary trees describe genetic relationships between populations? Heredity 102:506–513

    PubMed  Article  CAS  Google Scholar 

  39. Karhu A, Hurme P, Karjalainen M, Karvonen P, Kärkkäinen K, Neale D, Savolainen O (1996) Do molecular markers reflect patterns of differentiation in adaptive traits of conifers? Theor Appl Genet 93:215–221

    Article  CAS  Google Scholar 

  40. Keene D (1976) The late Saxon ‘Burh’. In: Biddle M (ed) Winchester Studies I. Winchester in the early Middle Ages. Claredon Press, Oxford

    Google Scholar 

  41. Krag C (2003) The early unification of Norway. In: Helle K (ed) The Cambridge history of Scandinavia, volume I. Cambridge University Press, pp 186–188

  42. Kunstler T, Curt T, Lepart J (2004) Spatial pattern of beech (Fagus sylvatica L.) and oak (Quercus pubescens) seedlings in natural pine (Pinus sylvestris L.) woodlands. Eur J For Res 123:331–337

    Google Scholar 

  43. Küster H (1997) The role of farming in the postglacial expansion of beech and hornbeam in the oak woodlands of central Europe. Holocene 7:239–242

    Article  Google Scholar 

  44. Larsen AB (1996) Genetic structure of populations of beech (Fagus sylvatica L) in Denmark. Scand J For Res 11:220–232

    Article  Google Scholar 

  45. Magri D (2008) Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J Biogeogr 35:450–463

    Article  Google Scholar 

  46. Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latalowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WO, Petit RJ, de Beaulieu JL (2006) A new scenario for the quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221

    PubMed  Article  CAS  Google Scholar 

  47. Miller MP (1997) Tools for population genetic analysis (TFPGA) 1.3: a Windows program for the analysis of allozyme and molecular population genetic data. http://www.marksgeneticsoftware.net, accessed 18 November 2010

  48. Mort ME, Crawford DJ, Santos-Guerra A, Francisco-Ortega J, Esselman EJ, Wolfe AD (2003) Relationships among the Macaronesian members of Tolpis (Asteraceae: Lactuceae) based upon analyses of inter simple sequence repeat (ISSR) markers. Taxon 52:511–518

    Article  Google Scholar 

  49. Nei M (1973) Analysis of genetic diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    PubMed  Article  CAS  Google Scholar 

  50. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  51. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  52. Nilsson SG (1985) Ecological and evolutionary interactions between reproduction of beech Fagus sylvatica and seed eating animals. Oikos 44:157–164

    Article  Google Scholar 

  53. Øyen BH (2010) Høydebonitet og produksjonsevne ved konvertering mellom gran, ask, bøk, eik, platanlønn og svartor i Sør-Norge. Forskning fra Skog og landskap (in press)

  54. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  55. Peterken GF (1996) Natural woodland: ecology and conservation in northern temperate regions. Cambridge University Press, Cambridge

    Google Scholar 

  56. Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organisation of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701

    PubMed  Article  CAS  Google Scholar 

  57. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  58. Skre D (2007) Towns and markets, kings and central places in south-western Scandinavia c. AD 800–950. In: Skre D (ed) Kaupang in Skiringssal. Kaupang excavation project publication series, volume I; Norske Oldfunn XXII. Aarhus University Press, Aarhus, pp 445–470

    Google Scholar 

  59. Sørensen R, Henningsmoen KE, Høeg HI, Stabell B, Bukholm KM (2007) Geology, soils, vegetation and sea levels in the Kaupang area. In: Skre D (ed) Kaupang in Skiringssal. Kaupang excavation project publication series, volume I; Norske Oldfunn XXII. Aarhus University Press, Aarhus, pp 251–272

    Google Scholar 

  60. Sturluson S (1941) Heimskringla (Íslenzk fornrit) XXVI bindi Heimskringla I. Aðalbjarnarson, Reykjavik

    Google Scholar 

  61. Taberlet PT, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonisation routes in Europe. Mol Ecol 7:453–464

    PubMed  Article  CAS  Google Scholar 

  62. Tamaki I, Setsuko S, Tomaru N (2008) Genetic variation and differentiation in populations of a threatened tree, Magnolia stellata: factors influencing the level of within-population genetic variation. Heredity 100:415–423

    PubMed  Article  CAS  Google Scholar 

  63. Tantasawat P, Trongchuen J, Prajongjai T, Seehalak W, Jittayasothorn Y (2010) Variety identification and comparative analysis of genetic diversity in yardlong bean (Vigna unguiculata spp. sesquipedalis) using morphological characters, SSR and ISSR analysis. Sci Hortic 124:204–216

    Article  CAS  Google Scholar 

  64. Tsumura Y, Ohba K, Strauss SH (1996) Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir (Pseudotsuga menziesii) and sugi (Cryptomeria japonica). Theor Appl Genet 92:40–45

    Article  CAS  Google Scholar 

  65. Vander Wall SB (2001) The evolutionary ecology of nut dispersal. Bot Rev 67:74–116

    Article  Google Scholar 

  66. Vornam B, Herzog S (2004) Spatial distribution of genetic variation in a natural beech stand (Fagus sylvatica L) based on microsatellite markers. Conservat Genet 5:561–570

    Article  CAS  Google Scholar 

  67. Yap IV, Nelson RJ (1996) WINBOOT: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. IRRI discussion paper series no. 14, International Rice Research Institute, Manila. http://www.riceworld.org/science/software/winboot.asp, accessed 18 November 2010

  68. Yeh FC, Yang RC, Boyle T (1999) POPGENE version 1.31. Microsoft Windows-based freeware for population genetic analysis. Quick user guide. University of Alberta and Centre for International Forestry Research. http://www.ualberta.ca/∼fyeh/popgene.pdf, accessed 18 November 2010

  69. Yin T, Zhang X, Huang M, Wang M, Zhuge Q, Tu S, Zhu LH, Wu R (2002) Molecular linkage maps of the Populus genome. Genome 45:541–555

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Hugh Milner and co-workers (UK), J.S. Jensen, B. Ditlevsen (Denmark), E. Finne, C. Kierulf, Å. Østgård and S. Øen (Norway) for organising the collection and shipment of beech buds. We also wish to thank K.E. Henningsmoen, H.I. Høeg, D. Skre and B. Myhre for valuable literature and discussions. J. Hubert, M. Sætersdal, T. Skrøppa and R. Sørensen have critically reviewed the paper, for which we are very grateful. J. Hubert also checked the English. We thank anonymous reviewers for constructive comments that substantially improved this manuscript. This work was supported by grants from the Norwegian Committee on Forest Genetic Resources and the Norwegian Forest and Landscape Institute.

Ethical standards

This work complies with the current laws in the countries in which it has been done.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tor Myking.

Additional information

Tor Myking and Igor Yakovlev contributed equally to this work.

Communicated by G. G. Vendramin

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary material, S1

(DOC 35 kb)

Supplementary material, S2

(DOC 84 kb)

Supplementary material, S3

(DOC 71 kb)

Supplementary material, S4

(DOC 60 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Myking, T., Yakovlev, I. & Ersland, G.A. Nuclear genetic markers indicate Danish origin of the Norwegian beech (Fagus sylvatica L.) populations established in 500–1,000 AD. Tree Genetics & Genomes 7, 587–596 (2011). https://doi.org/10.1007/s11295-010-0358-y

Download citation

Keywords

  • Genetic distance
  • Genetic diversity
  • Human introduction
  • ISSR
  • Scandinavia
  • RFLP