Skip to main content
Log in

Revisiting protein heterozygosity in plants—nucleotide diversity in allozyme coding genes of conifer Pinus sylvestris

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Allozyme variation has been and continues to be a major source of information on the level of genetic variation among plant species. Deciphering the molecular basis of electrophoretic variation is essential for understanding the forces affecting the protein level variation. In this study, the relationship between allozyme heterozygosity and nucleotide diversity in plants is investigated among and within species. Allozyme and nucleotide diversity in 27 plant species was reviewed. At the multilocus level, the two methods are congruent: a clear correlation between the two measures of genetic diversity among plant species was observed, strengthening the view that effective population size is the major determinant of genome-wide diversity. Nucleotide diversity at six allozyme coding genes (6pgdB, aco, gdh, gotC, mdhA, and mdhB) in conifer Pinus sylvestris was investigated jointly with electrophoretic data. Single non-synonymous charge-changing mutations were found together with electrophoretic alleles that consequently were mutationally unique. Synonymous site nucleotide diversity (point estimate of θ W—0.009 per bp) and silent site divergence from Pinus pinaster at allozyme coding loci were at comparable levels with other loci in the species. Linkage disequilibrium was extensive compared to earlier estimates from P. sylvestris and other trees, spanning several kilobases. Allozyme coding genes had an excess of closely related haplotypes whose frequency has recently increased possibly as a result of partial selective sweeps or balancing selection, but complex demographic effects cannot be excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashton DG, Braden AWH (1961) Serum b-globulin polymorphism in mice. Aust J Biol Sci 14:248–253

    CAS  Google Scholar 

  • Barbadilla A, King LM, Lewontin RC (1996) What does electrophoretic variation tell us about protein variation? Mol Biol Evol 13:427–432

    PubMed  CAS  Google Scholar 

  • Bazin E, Glémin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572

    Article  PubMed  CAS  Google Scholar 

  • Berry A, Kreitman M (1993) Molecular analysis of an allozyme cline: alcohol dehydrogenase in Drosophila melanogaster on the east coast of North America. Genetics 134:869–893

    PubMed  CAS  Google Scholar 

  • Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci U S A 101:15255–15260

    Article  PubMed  CAS  Google Scholar 

  • Bubb KL, Bovee D, Buckley D, Haugen E, Kibukawa M, Paddock M, Palmieri A, Subramanian S, Zhou Y, Kaul R et al (2006) Scan of human genome reveals no new loci under ancient balancing selection. Genetics 173:2165–2177

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Källman T, Gyllenstrand N, Lascoux M (2010) New insights on the speciation history and nucleotide diversity of three boreal spruce species and a tertiary relict. Heredity 104:3–14

    Article  PubMed  CAS  Google Scholar 

  • Coppin CW, Odgers WA, Oakeshott JG (2007) Latitudinal clines for nucleotide polymorphisms in the esterase 6 gene of Drosophila melanogaster. Genetica 129:259–271

    Article  PubMed  CAS  Google Scholar 

  • Doebley JF (1989) Isozymic evidence and the evolution of crop plants. In: Soltis D, Soltis P (eds) Isozymes in plant biology. Dioscorides, Portland, pp 165–191

    Google Scholar 

  • Dvornyk V, Sirviö A, Mikkonen M, Savolainen O (2002) Low nucleotide diversity at the pal1 locus in the widely distributed Pinus sylvestris. Mol Biol Evol 19:179–188

    PubMed  CAS  Google Scholar 

  • Eanes WF (1999) Analysis of selection on enzyme polymorphisms. Annu Rev Ecol Syst 30:301–326

    Article  Google Scholar 

  • Eckert A, Wegrzyn JL, Pande B, Jermstad KD, Lee JM, Liechty JD, Tearse BR, Krutovsky KV, Neale DB (2009) Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold-hardiness in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii). Genetics 183:289–298

    Article  PubMed  Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413

    PubMed  CAS  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Gaut BS, Wright SI, Rizzon C, Dvorak J, Anderson LK (2007) Opinion—recombination: an underappreciated factor in the evolution of plant genomes. Nature Rev Genet 8:77–84

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JH (1991) The causes of molecular evolution. Oxford University Press, New York

    Google Scholar 

  • González-Martínez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172:1915–1926

    Article  PubMed  Google Scholar 

  • Gullberg U, Yazdani R, Rudin D, Ryman N (1985) Allozyme variation in Scots pine (Pinus sylvestris L) in Sweden. Silvae Genet 34:193–201

    Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026

    PubMed  CAS  Google Scholar 

  • Guries RP, Ledig FT (1978) Inheritance of some polymorphic isozymes in pitch pine (Pinus rigida Mill.). Heredity 40:27–32

    Article  CAS  Google Scholar 

  • Hahn MW (2008) Toward a selection theory of molecular evolution. Evolution 62:255–265

    Article  PubMed  CAS  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond B Biol Sci 351:1291–1298

    Article  Google Scholar 

  • Hamrick JL, Linhart YB, Mitton JB (1979) Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Ann Rev Ecolog Syst 10:173–200

    Article  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124

    Google Scholar 

  • Hedrick PW (2006) Genetic polymorphism in heterogeneous environments: the age of genomics. Annu Rev Evol Ecol Syst 37:67–93

    Article  Google Scholar 

  • Hedrick PW (2007) Balancing selection. Curr Biol 17:R230–R231

    Article  PubMed  CAS  Google Scholar 

  • Heuertz M, De Paoli E, Källman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce Picea abies (L.) Karst. Genetics 174:2095–2105

    Article  PubMed  CAS  Google Scholar 

  • Hudson RR, Kreitman M, Aguadé M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116:153–159

    PubMed  CAS  Google Scholar 

  • Hudson RR, Bailey K, Skarecky D, Kwiatowski J, Ayala FJ (1994) Evidence for positive selection in the superoxide-dismutase (sod) region of Drosophila melanogaster. Genetics 136:1329–1340

    PubMed  CAS  Google Scholar 

  • Ingvarsson PK (2005) Nucleotide polymorphism and linkage disequilbrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics 169:945–953

    Article  PubMed  CAS  Google Scholar 

  • Ingvarsson PK (2008) Multilocus patterns of nucleotide polymorphism and the demographic history of Populus tremula. Genetics 180:329–340

    Article  PubMed  Google Scholar 

  • Jaramillo-Correa JP, Verdú M, González-Martínez SC (2010) The contribution of recombination to heterozygosity differs among plant evolutionary lineages and life-forms. BMC Evol Biol 10:22

    Article  PubMed  Google Scholar 

  • Kado T, Matsumoto A, Ujino-Ihara T, Tsumura Y (2008) Amounts and patterns of nucleotide variation within and between two Japanese conifers, sugi (Cryptomeria japonica) and hinoki (Chamaecyparis obtusa) (Cupressaceae sensu lato). Tree Genet Gen 4:133–141

    Article  Google Scholar 

  • Kawabe A, Yamane K, Miyashita NT (2000) DNA polymorphism at the cytosolic phosphoglucose isomerase (PgiC) locus of the wild plant Arabidopsis thaliana. Genetics 156:1339–1347

    PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    PubMed  CAS  Google Scholar 

  • Kreitman M (1983) Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature 304:412–417

    Article  PubMed  CAS  Google Scholar 

  • Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas fir. Genetics 171:2029–2041

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Ledig FT (1998) Genetic variation in Pinus. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 251–280

    Google Scholar 

  • Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York

    Google Scholar 

  • Lynch M (2006) The origins of eukaryotic gene structure. Mol Biol Evol 23:450–468

    Article  PubMed  CAS  Google Scholar 

  • Macpherson JM, González J, Witten DM et al (2008) Nonadaptive explanations for signatures of partial selective sweeps in Drosophila. Mol Biol Evol 25:1025–1042

    Article  PubMed  CAS  Google Scholar 

  • Maynard Smith J, Haigh J (1974) The hitch-hiking effect of a favorable gene. Genet Res 23:23–35

    Article  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the adh locus in Drosophila. Nature 351:652–654

    Article  PubMed  CAS  Google Scholar 

  • McVean G (2007) The structure of linkage disequilibrium around a selective sweep. Genetics 175:1395–1406

    Article  PubMed  Google Scholar 

  • McVean G, Awadalla P, Fearnhead P (2002) A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160:1231–1241

    PubMed  CAS  Google Scholar 

  • Mulligan CJ, Kitchen A, Miyamoto MM (2006) Comment on “population size does not influence mitochondrial genetic diversity in animals”. Science 314:1390a

    Article  CAS  Google Scholar 

  • Muona O, Harju A (1989) Effective population sizes, genetic variability, and mating system in natural stands and seed orchards of Pinus sylvestris. Silvae Genet 38:221–228

    Google Scholar 

  • Muona O, Szmidt AE (1985) A multilocus study of natural populations of Pinus sylvestris. Lect Notes Biomath 60:226–240

    Google Scholar 

  • Muona O, Yazdani R, Rudin D (1987) Genetic change between life stages in Pinus sylvestris allozyme variation in seeds and planted seedlings. Silvae Genet 36:39–42

    Google Scholar 

  • Muona O, Harju A, Kärkkäinen K (1988) Genetic comparison of natural and nursery grown seedlings of Pinus sylvestris using allozymes. Scand J For Res 3:37–46

    Article  Google Scholar 

  • Navarro-Sabate A, Aguadé M, Segarra C (1999) The relationship between allozyme and chromosomal polymorphism inferred from nucleotide variation at the acph-1 gene region of Drosophila subobscura. Genetics 153:871–889

    PubMed  CAS  Google Scholar 

  • Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330

    Article  PubMed  CAS  Google Scholar 

  • Nei M (2005) Selectionism and neutralism in molecular evolution. Mol Biol Evol 22:2318–2342

    Article  PubMed  CAS  Google Scholar 

  • Palme AE, Wright M, Savolainen O (2008) Patterns of divergence among conifer ESTs and polymorphism in Pinus sylvestris identify putative selective sweeps. Mol Biol Evol 25:2567–2577

    Article  PubMed  CAS  Google Scholar 

  • Parsch J, Meiklejohn CD, Hartl DL (2001) Patterns of DNA sequence variation suggest the recent action of positive selection in the janus-ocnus region of Drosophila simulans. Genetics 159:647–657

    PubMed  CAS  Google Scholar 

  • Pyhäjärvi T, García-Gil MR, Knürr T, Mikkonen M, Wachowiak W, Savolainen O (2007) Demographic history has influenced nucleotide diversity in European Pinus sylvestris populations. Genetics 177:1713–1724

    Article  PubMed  Google Scholar 

  • Quesada H, Ramirez UEM, Rozas J, Aguade M (2003) Large-scale adaptive hitchhiking upon high recombination in Drosophila simulans. Genetics 165:895–900

    PubMed  CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Savolainen O, Pyhäjärvi T (2007) Genomic diversity in forest trees. Curr Opin Plant Biol 10:162–167

    Article  PubMed  CAS  Google Scholar 

  • Shaw CR, Prasad R (1970) Starch gel electrophoresis of enzymes—a compilation of recipes. Biochem Genet 4:297–320

    Article  PubMed  CAS  Google Scholar 

  • Skibinski DOF, Ward RD (2004) Average allozyme heterozygosity in vertebrates correlates with Ka/Ks measured in the human–mouse lineage. Mol Biol Evol 21:1753–1759

    Article  PubMed  CAS  Google Scholar 

  • Szmidt AE, Muona O (1985) Genetic effects of Scots pine (Pinus sylvestris) domestication. Lect Notes Biomath 60:241–252

    Google Scholar 

  • Szmidt AE, Muona O (1989) Linkage relationships of allozyme loci in Pinus sylvestris. Hereditas 111:91–97

    Article  CAS  Google Scholar 

  • Szmidt AE, Yazdani R (1984) Electrophoretic studies of genetic polymorphism of shikimate and 6-phosphogluconate dehydrogenases in Scots pine (Pinus sylvestris L.). Arboretum Kórnickie Rucznik 2:63–72

    Google Scholar 

  • Tajima F (1983) Evolutionary relationships of DNA sequences in finite populations. Genetics 105:437–460

    PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tiffin P, Hacker R, Gaut BS (2004) Population genetic evidence for rapid changes in intraspecific diversity and allelic cycling of a specialist defense gene in Zea. Genetics 168:425–434

    Article  PubMed  CAS  Google Scholar 

  • Toomajian C, Hu TT, Aranzana MJ, Lister C, Tang CL, Zheng HG, Zhao KY, Calabrese P, Dean C, Nordborg M (2006) A nonparametric test reveals selection for rapid flowering in the Arabidopsis genome. Plos Biol 4:732–738

    Article  CAS  Google Scholar 

  • Vallejos CE (1983) Isozymes in plant genetics and breeding, Part A: enzyme activity staining. Elsevier Science, Amsterdam

    Google Scholar 

  • Verrelli BC, Eanes WF (2001) Clinal variation for amino acid polymorphisms at the pgm locus in Drosophila melanogaster. Genetics 157:1649–1663

    PubMed  CAS  Google Scholar 

  • Verrelli BC, McDonald JH, Argyropoulos G, Destrol-Bisol G, Froment A, Drousiotou A, Lefranc G, Helal AN, Loiselet J, Tishkoff SA (2002) Evidence for balancing selection from nucleotide sequence analyses of human G6PD. Am J Hum Genet 71:1112–1128

    Article  PubMed  CAS  Google Scholar 

  • Watterson G (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  • Watterson GA (1978) The homozygosity test of neutrality. Genetics 88:405–417

    PubMed  CAS  Google Scholar 

  • Weir BS (1990) Genetic data analysis. Sinauer, Sunderland

    Google Scholar 

  • Wheat CW, Watt WB, Pollock DD, Schulte PM (2006) From DNA to fitness differences: sequences and structures of adaptive variants of Colias phosphoglucose isomerase (PGI). Mol Biol Evol 23:499–512

    Article  PubMed  CAS  Google Scholar 

  • Wheat CW, Haag CR, Marden JH, Hanski I, Frilander MJ (2010) Nucleotide polymorphism at a gene (Pgi) under balancing selection in a butterfly metapopulation. Mol Biol Evol 27:267–281

    Article  PubMed  CAS  Google Scholar 

  • Whitlock MC (2005) Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. J Evol Biol 18:1368–1373

    Article  PubMed  CAS  Google Scholar 

  • Zeng K, Shi S, Wu CI (2007) Compound tests for the detection of hitchhiking under positive selection. Mol Biol Evol 24:1898–1908

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Soile Finne, Matti Salmela, and Pekka Lankinen for valuable technical assistance; Timo Knürr for consulting on statistical issues; Pär K. Ingvarsson, Thomas Bataillon, and Helmi Kuittinen for commenting on the manuscript; and Torgny Persson from The Forestry Research Institute of Sweden and Katri Kärkkäinen from the Finnish Forest Research Institute for seed material. This work was supported by the European Union (EVOLTREE 016322), Finnish Graduate School in Population Genetics and Centre for Population Genetic Analyses funded by the Academy of Finland, and Biocenter Oulu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Pyhäjärvi.

Additional information

Communicated by R. Sederoff

Tanja Pyhäjärvi and Sonja T. Kujala contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Tables S1–S4

(DOC 531 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyhäjärvi, T., Kujala, S.T. & Savolainen, O. Revisiting protein heterozygosity in plants—nucleotide diversity in allozyme coding genes of conifer Pinus sylvestris . Tree Genetics & Genomes 7, 385–397 (2011). https://doi.org/10.1007/s11295-010-0340-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0340-8

Keywords

Navigation