Skip to main content
Log in

Genetic variability of introduced and local Spanish peach cultivars determined by SSR markers

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

A set of 94 peach cultivars including Spanish native peach and foreign commercial cultivars were analyzed using 15 SSR markers, selected for their high level of polymorphism. The number of alleles obtained varied from two to 11 with an average of 6.73 giving 185 different genotypes. All the cultivars showed a unique genetic profile, each one using different genotypic combination of all loci. BPPCT001 was the most informative locus showing also the highest discrimination power. Only six loci allowed the unambiguous separation of all the Spanish native cultivars studied, and the genotypic combination of only eight loci permitted the total differentiation of the 94 peach cultivars analyzed. The six selected loci (BPPCT001, BPPCT006, BPPCT008, PS9f8, UDP98-022, and UDP98-412) seem to be very useful for future Spanish peach identification works, and they will help to establish a molecular data base for native peach cultivars. UPGMA analysis was performed from the genetic distance matrix, and allowed the arrangement of all genotypes according to their genetic diversity. The genetic diversity among cultivars, observed in this work, led to their separation according to their regional origin, their morphological characteristics, and especially according to their fruit traits. Analysis of molecular variance was performed for seven populations from different regions of Spain and USA to examine the distribution of genetic variation of the studied accessions, showing that the major variation occurred within populations in each geographic site. The results reveal the existence of two diversity regions in Spain for peach germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abbassi EK (2007) Variabilidad y genética de asociación en melocotonero. Master dissertation, CIHEAM, Spain

  • Aranzana MJ, García-Mas J, Carbó J, Arús P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92

    Article  CAS  Google Scholar 

  • Aranzana MJ, Carbó J, Arús P (2003a) Microsatellite variability in peach [Prunus persica (L.) Batsch]: cultivar identification, marker mutation, pedigree inferences and population structure. Theor Appl Genet 106:1341–1352

    PubMed  CAS  Google Scholar 

  • Aranzana M, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arús P (2003b) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    PubMed  CAS  Google Scholar 

  • Badenes ML, Werner DJ, Martínez-Calvo J, Llácer G (1998) A description of peach native populations from Spain. Fruit Var J 52:80–86

    Google Scholar 

  • Bassam BJ, Caetano-Anoelles G, Gresshoff PM (1983) Fast and sensitive silver staining of DNA in polyacrylamide gels. Ann Biochem 196:80–83

    Article  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Bouhadida M, Casas AM, Moreno MA, Gogorcena Y (2007) Molecular characterization of Miraflores peach variety and relatives using SSRs. Sci Hortic 111:140–145

    Article  CAS  Google Scholar 

  • Bouhadida M, Casas AM, Gonzalo MJ, Arús P, Moreno MA, Gogorcena Y (2009) Molecular characterization and genetic diversity of Prunus rootstocks. Sci Hortic 120:237–245

    Article  CAS  Google Scholar 

  • Cambra M (1979) Selección de variedades españolas de melocotonero de carne amarilla dura. ITEA 37:18–26

    Google Scholar 

  • Cheng Z, Huang H (2009) SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci Hortic 120:188–193

    Article  CAS  Google Scholar 

  • Cheng FS, Brown SK, Weeden NF (1997) A DNA extraction protocol from various tissues in woody species. Hortic Sci 32:921–922

    CAS  Google Scholar 

  • Decroocq V, Hagen LS, Favé MG, Eyquard JP, Pierronnet A (2004) Microsatellite markers in the hexaploid Prunus domestica species and parentage lineage of three European plum cultivars using nuclear and chloroplast simple-sequence repeats. Mol Breed 13:135–142

    Article  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  PubMed  CAS  Google Scholar 

  • Downey SL, Iezzoni AF (2000) Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach and sour cherry. J Am Soc Hortic Sci 125:76–80

    CAS  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformat Online 1:47–50

    CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791

    Article  Google Scholar 

  • Fogle HW (1977) Self-pollination and its implication in peach improvement. Fruit Var J 31:74–75

    Google Scholar 

  • Gašíc K, Ognjanov V, BoŠkovíc R, Tobutt KR (2000) Isoenzyme polymorphism in peach cultivars. Acta Hortic 538:517–523

    Google Scholar 

  • Gepts P (1995) Genetic markers and core collections. In: International Plant Genetic Resources Institute (IPGRI) (ed) Core collections of plant genetic resources., pp 127–146

  • Gogorcena Y, Parfitt DE (1994) Evaluation of RAPD marker consistency for detection of polymorphism in apricot. Sci Hortic 59:163–167

    Article  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Hurtado MA, Badenes ML, Llácer G, Westman A, Beck E, Abbott GA (2001) Contribution to apricot genetic analysis with RFLP, RAPD and AFLP markers. Acta Hortic 546:417–420

    CAS  Google Scholar 

  • Joobeur T, Periam N, De Vicente MC, King GJ, Arús P (2000) Development of a second generation linkage map for almond using RAPD and SSR markers. Genome 43:649–655

    Article  PubMed  CAS  Google Scholar 

  • Kloosterman AD, Budowle B, Daselaar P (1993) PCR-amplification and detection of the human DIS80 VNTR locus. Amplification conditions, population genetics and application in forensic analysis. Int J Leg Med 105:257–264

    Article  CAS  Google Scholar 

  • Krichen L, Mnejja M, Arús P, Marrakchi M, Trifi-Farah N (2006) Use of microsatellite polymorphisms to develop an identification key for Tunisian apricots. Genet Resour Crop Evol 53:1699–1706

    Article  Google Scholar 

  • Li T-H, Li Y-X, Li Z-C, Zhang H-L, Qi Y-W, Wang T (2008) Simple sequence repeat analysis of genetic diversity in primary core collection of peach (Prunus persica). J Integr Plant Biol 50:102–110

    Article  PubMed  CAS  Google Scholar 

  • Llácer G, Alonso M, Rubio MJ, Batlle I, Iglesias I, Vargas FJ, García-Brunton J, Badenes ML (2009a) Situación del material vegetal del melocotonero utilizado en España. ITEA 105:67–83

    Google Scholar 

  • Llácer G, Alonso JM, Rubio-Cabetas MJ, Battle I, Iglesias I, Vargas FJ, García-Brunton J, Badenes ML (2009b) Peach industry in Spain. J Am Pomol Soc 63:128–133

    Google Scholar 

  • Maghuly F, Fernández EB, Ruthner S, Pedryc A, Laimer M (2005) Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genet Genomes 1:151–165

    Article  Google Scholar 

  • Martínez-Mora C, Rodríguez Navarro J, De la Rúa P, Ruiz García L, Cenis JL (2008) Caracterización molecular de germoplasma de melocotonero autóctono español mediante marcadores microsátelite. Acta Hortic 51:117–118

    Google Scholar 

  • Messeguer R, Arús P, Carrera M (1987) Identification of peach cultivars with pollen isozymes. Sci Hortic 31:107–117

    Article  Google Scholar 

  • Murray BW (1996) The estimation of genetic distance and population substructure from microsatellite allele frequency data. Course notes. Department of Biology, Mc Master University, Hamilton, Ont. http://helix.biology.mcmaster.ca/brent/brent.html

  • Okie WR (1998) Handbook of peach and nectarine varieties: performance in the Southeastern United States and index of names. USDA Agriculture Handbook No. 714

  • Quarta R, Dettori MT, Verde I, Marchesi U, Palombi MA, Doré C, Dosba F, Baril C (2001) Characterization and evaluation of genetic diversity in peach germplasm using RAPD and RFLP markers. Acta Hortic 546:489–496

    CAS  Google Scholar 

  • Rogers JS (1972) Measures of genetic similarity and genetic distance. Studies in genetics VII. Univ Tex Publ 7213:145–153

    Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc Numerical taxonomy and multivariate analysis system. Version 2.1. Exeter software, Setauket, NY

  • Scorza R, Mehlenbacher SA, Lightner GW (1985) Inbreeding and coancestry of freestone peach cultivars of the Eastern United States and implications for peach germplasm improvement. J Am Soc Hortic Sci 110:547–552

    Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbot AG (2000) Characterization of microsatellite in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 97:1034–1041

    Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0. Sinauer Associates, Sunderland

    Google Scholar 

  • Testolin R, Marrazo T, Cipriani G, Quarta R, Verde I, Dettori MT, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Wünsch A, Carrera M, Hormaza JI (2006) Molecular characterization of local Spanish peach [Prunus persica (L.) Batsch] germplasm. Genet Resour Crop Evol 53:925–932

    Article  Google Scholar 

  • Zehdi S, Trifi M, Billotte N, Marrakchi M, Pintaud JC (2004) Genetic diversity of Tunisian date palm (Phoenix dactylifera L.) revealed by nuclear microsatellite polymorphism. Hereditas 141:278–287

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Spanish MICINN (Ministry of Science and Innovation) projects AGL2005-05533 and AGL-2008-00283, cofunded by FEDER, INIA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, project RF2007-00026-C02-00) and the Regional Government of Aragon (A44). M. Bouhadida was supported by a fellowship from the AECI (Agencia Española de Cooperación Internacional) of the Spanish Ministry of Foreign Affairs, and M.J. Gonzalo was the beneficiary of an I3P-PC2006 contract from the CSIC-FSE. We thank L.A. Inda for technical assistance with the bootstrap analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Gogorcena.

Additional information

Communicated by E. Dirlewanger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouhadida, M., Moreno, M.Á., Gonzalo, M.J. et al. Genetic variability of introduced and local Spanish peach cultivars determined by SSR markers. Tree Genetics & Genomes 7, 257–270 (2011). https://doi.org/10.1007/s11295-010-0329-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0329-3

Keywords

Profiles

  1. Yolanda Gogorcena