Skip to main content

Advertisement

Log in

A hidden Markov model approach to multilocus linkage analysis in a full-sib family

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Statistical packages for constructing genetic linkage maps in inbred lines are well developed and applied extensively, while linkage analysis in outcrossing species faces some statistical challenges because of their complicated genetic structures. In this article, we present a multilocus linkage analysis via hidden Markov models for a linkage group of markers in a full-sib family. The advantage of this method is the simultaneous estimation of the recombination fractions between adjacent markers that possibly segregate in different ratios, and the calculation of likelihood for a certain order of the markers. When the number of markers decreases to two or three, the multilocus linkage analysis becomes traditional two-point or three-point linkage analysis, respectively. Monte Carlo simulations are performed to show that the recombination fraction estimates of multilocus linkage analysis are more accurate than those just using two-point linkage analysis and that the likelihood as an objective function for ordering maker loci is the most powerful method compared with other methods. By incorporating this multilocus linkage analysis, we have developed a Windows software, FsLinkageMap, for constructing genetic maps in a full-sib family. A real example is presented for illustrating linkage maps constructed by using mixed segregation markers. Our multilocus linkage analysis provides a powerful method for constructing high-density genetic linkage maps in some outcrossing plant species, especially in forest trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armstrong N (2001) Incorporating interference into the linkage analysis of experimental crosses. Ph. D. thesis. Berkeley: University of California

  • Baum LE, Petrie T, Soules G, Weiss N (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann Math Stat 41:164–171

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38

    Google Scholar 

  • El-Din El-Assal S, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29:435–440

    Article  CAS  PubMed  Google Scholar 

  • Falk CT (1989) A simple scheme for preliminary ordering of multiple loci: application to 45 CF families. In: Elston RC, Spence MA, Hodge SE, MacCluer JW (eds) Multipoint mapping and linkage based upon affected pedigree members, Genetic Workshop 6. Liss, New York, pp 17–22

    Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) Fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values and the calculation of distance between the loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  • Jensen J, Helms Jørgensen J (1975) The barley chromosome 5 linkage map. Hereditas 80:17–26

    Article  Google Scholar 

  • Kosambi DD (1944) The esimation pf map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lalouel JM (1977) Linkage mapping from pair-wise recombination data. Heredity 38:61–77

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Green P (1987) Construction of multilocus genetic maps in humans. Proc Natl Acad Sci USA 84:2363–2367

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Li CB, Zhou AL, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Cui YH, Wu RL (2004) A multilocus likelihood approach to joint modeling of linkage, parental diplotype and gene order in a full-sib family. BMC Genetics 5:20

    Article  PubMed  Google Scholar 

  • Maliepaard C, Jansen J, Van Ooijen JW (1997) Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications. Genet Res 70:237–250

    Article  Google Scholar 

  • Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77:257–286

    Article  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1029–1030

    Article  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, The Netherlands

    Google Scholar 

  • Van Os H, Stam P, Visser RGF, Van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Article  CAS  PubMed  Google Scholar 

  • Weeks D, Lange K (1987) Preliminary ranking procedures for multilocus ordering. Genomics 1:236–242

    Article  CAS  PubMed  Google Scholar 

  • Wilson SR (1988) A major simplification in the preliminary ordering of linked loci. Genet Epidemiol 5:75–80

    Article  CAS  PubMed  Google Scholar 

  • Wu RL, Ma CX (2002) Simultaneous maximum likelihood estimation of linkage and linkage phases in outcrossing species. Theor Popul Biol 61:349–363

    Article  PubMed  Google Scholar 

  • Wu J, Jenkins J, Zhu J, McCarty J, Watson C (2003) Monte Carlo simulations on marker grouping and ordering. Theor Appl Genet 107:568–573

    Article  CAS  PubMed  Google Scholar 

  • Zhang B (2005) Constructing genetic linkage maps and mapping QTLs affecting important traits in poplar. Ph. D. Dissertation, Nanjing Forestry University, Nanjing, China: Available at : http://fgbio.njfu.edu.cn/tong/zhang2005.pdf

Download references

Acknowledgements

We thank the anonymous reviewer and the associate editor for their constructive comments on the manuscript. This work was supported by the National Natural Science Foundation of China (No. 30872051) and the Natural Science Foundation of Jiangsu Province, China (No. BK2008422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jisen Shi.

Additional information

Communicated by J. Davis

Appendix A

Appendix A

Following Amstrong's deriving procedure (Armstrong 2001), we define

$$ Q\left( {r,\;r\prime } \right) = \sum\limits_y {P\left( {\left. {y,\;O} \right|r} \right)\log P\left( {\left. {y,\;O} \right|r\prime } \right)} . $$
(10)

Then, we have

$$ \begin{gathered} Q\left( {r,\;r\prime } \right) = {E_r}\left[ {\log P\left( {\left. {y,\;O} \right|r\prime } \right)} \right] \hfill \\= {E_r}\left[ {\sum\limits_{k = 1}^n {\log P\left( {\left. {{y^k},\;{O^k}} \right|r\prime } \right)} } \right] \hfill \\= \sum\limits_{k = 1}^n {\sum\limits_{{y^k}} {P\left( {\left. {{y^k}} \right|{O^k},\;r} \right)\log P\left( {\left. {{y^k},\;{O^k}} \right|r\prime } \right)} } \hfill \\= \sum\limits_{k = 1}^n {\sum\limits_{{y^k}} {P\left( {\left. {y_1^k, \cdots, y_T^k} \right|{O^k},\;r} \right)\left[ {\log P\left( {y_1^k} \right) + \log P\left( {\left. {y_2^k} \right|y_1^k,r_1^\prime } \right) + \cdots } \right.} } \hfill \\\;\;\;\;\;\left. { + \log P\left( {\left. {y_T^k} \right|y_{T - 1}^k,r_{T - 1}^\prime } \right) + \log P\left( {\left. {O_1^k} \right|y_1^k} \right) + \cdots + \log P\left( {\left. {O_T^k} \right|y_T^k} \right)} \right] \hfill \\\end{gathered} $$
(11)

In terms of \( r_t^\prime \), the above can be expressed as

$$ \begin{gathered} \sum\limits_{k = 1}^n {\sum\limits_{y_t^k,y_{t + 1}^k} {P\left( {\left. {y_t^k,y_{t + 1}^k} \right|{O^k},\;{r_t}} \right)\log P\left( {\left. {y_{t + 1}^k} \right|y_t^k,r_t^\prime } \right)} } \hfill \\= \sum\limits_{k = 1}^n {\sum\limits_{i,j = 1}^4 {P\left( {\left. {y_t^k = i,\;y_{t + 1}^k = j} \right|{O^k},\;{r_t}} \right)\log \left[ {r\prime_t^{{n_t}\left( {i,j} \right)}{{\left( {1 - r_t^\prime } \right)}^{2 - {n_t}\left( {i,j} \right)}}} \right]} } \hfill \\= \sum\limits_{k = 1}^n {\left[ {\sum\limits_{i,j} {\xi_t^k\left( {i,j} \right){n_t}\left( {i,j} \right)\log \frac{{r_t^\prime }}{{1 - r_t^\prime }}} + 2\log \left( {1 - r_t^\prime } \right)} \right]} \hfill \\\end{gathered} $$
(12)

By Baum's lemma, to maximum the likelihood (Eq. 4) is equivalent to maximizing (Eq. 12) with respect to \( r_t^\prime \). Therefore, differentiating (12) and setting it to zero, we obtain the likelihood estimate:

$$ {\hat{r}_t} = \frac{1}{{2n}}\sum\limits_{k = 1}^n {\sum\limits_{i,j = 1}^4 {\xi_t^k\left( {i,j} \right){n_t}\left( {i,j} \right)} \;} $$
(13)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, C., Zhang, B. & Shi, J. A hidden Markov model approach to multilocus linkage analysis in a full-sib family. Tree Genetics & Genomes 6, 651–662 (2010). https://doi.org/10.1007/s11295-010-0281-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0281-2

Keywords