Skip to main content
Log in

Optimization of combined genetic gain and diversity for collection and deployment of seed orchard crops

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Genetic gain and diversity of seed orchards’ crops are determined by the number of parents, their breeding values and relatedness, within-orchard pollination efficiency, and level of pollen contamination. These parameters can be manipulated at establishment by varying clonal representation (e.g., linear deployment), during orchard development by genetic thinning, or by selective harvesting. Since clonal fecundities are known to vary both within and among years, then each seed crop has a unique genetic composition and, therefore, crops should be treated on a yearly basis. Here we present an optimization protocol that maximizes crop’s genetic gain at any desired genetic diversity through the selection of a subset of the crop that meets both parameters. The genetic gain is maximized within the biological limit set by each clone’s seed-cone production and effective population size is used as a proxy to genetic diversity whereby any relationship among clones is considered. The optimization was illustrated using 3 years’ reproductive output data from a first-generation western larch seed orchard and was tested under various scenarios including actual male and female reproductive output and male reproductive output assumed to be either equal to that of female or a function of clonal representation. Furthermore, various levels of co-ancestry were assigned to the orchard’s clones in supplementary simulations. Following the optimization, all solutions were effective in creating custom seedlots with different gain and diversity levels and provided the means to estimate the genetic properties of composite seedlots encompassing the remaining “unused” seed from a number of years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anonymous (2002) The MOSEK.NET API manual. Version 4.0 (Revision 60). Mosek ApS, Denmark, p 341

  • Anonymous (1976) Twentieth annual report on cooperative tree improvement and hardwood research program. North Carolina State University, Raleigh

    Google Scholar 

  • Askew GR (1988) Estimation of gamete pool compositions in clonal seed orchards. Silvae Genet 37:227–232

    Google Scholar 

  • Bila AD, Lindgren D, Mullin TJ (1999) Fertility variation and its effect on diversity over generations in a teak plantation (Tectona grandis L.f.). Silvae Genet 48:109–114

    Google Scholar 

  • Bilir N, Kang K-S, Ozturk H (2002) Fertility variation and gene diversity in clonal seed orchards of Pinus brutia, Pinus nigra and Pinus sylvestris in Turkey. Silvae Genet 51:112–115

    Google Scholar 

  • Bondesson FL, Lindgren D (1993) Optimal utilization of clones and genetic thinning of seed orchards. Silvae Genet 42:157–163

    Google Scholar 

  • Burczyk J, Chalupka V (1997) Flowering and cone production variability and its effect on parental balance in a Scots pine clonal seed orchard. Ann Sci For 54:128–144

    Article  Google Scholar 

  • Caron GE, Powell GD (1989) Patterns of seed-cone and pollen-cone production in young Picea mariana trees. Can J For Res 19:359–364

    Article  Google Scholar 

  • Cockerham C (1967) Group inbreeding and coancestry. Genetics 56:89–104

    PubMed  CAS  Google Scholar 

  • El-Kassaby YA, Askew GR (1991) The relation between reproductive phenology and output in determining the gametic pool profile in a Douglas-fir seed orchard. For Sci 37:827–835

    Google Scholar 

  • El-Kassaby YA, Cook C (1994) Female reproductive energy and reproductive success in a Douglas-fir seed orchard and its impact on genetic diversity. Silvae Genet 43:243–246

    Google Scholar 

  • El-Kassaby YA, Reynolds S (1990) Reproductive phenology, parental balance and supplemental mass pollination in a Sitka spruce seed orchard. Forest Ecol Manag 31:45–54

    Article  Google Scholar 

  • El-Kassaby YA, Ritland K (1986) The relation of outcrossing and contamination to reproductive phenology and supplemental mass pollination in a Douglas-fir seed orchard. Silvae Genet 35:240–244

    Google Scholar 

  • El-Kassaby YA, Fashler AMK, Crown M (1989) Variation in fruitfulness in a Douglas-fir seed orchard and its effect on crop-management decisions. Silvae Genet 38:113–121

    Google Scholar 

  • El-Kassaby YA, Fashler AMK, Sziklai O (1984) Reproductive phenology and its impact on genetically improved seed production in a Douglas-fir seed orchard. Silvae Genet 33:120–125

    Google Scholar 

  • Emik LO, Terrill CE (1949) Systematic procedures for calculating inbreeding coefficients. J Heredity 40:51–55

    CAS  Google Scholar 

  • Eriksson G, Johnsson A, Lindgren D (1973) Flowering in a cone trial of Picea abies Karst. Studia Forestalia Suecica 110:45

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Harlow, Longman

    Google Scholar 

  • Funda T, Chen C, Liewlaksaneeyanawin C, Kenawy A, El-Kassaby YA (2008) Pedigree and mating system analyses in a western larch (Larix occidentalis Nutt.) experimental population. Ann For Sci DOI:10.1051/forest:2008055

  • Griffin AR (1982) Clonal variation in radiata pine. I. Some flowering, cone and seed production traits. Australian Forest Research 12:295–302

    Google Scholar 

  • Hansen OK, Kjær ED (2006) Paternity analysis with microsatellites in a Danish Abies nordmanniana clonal seed orchard reveals dysfunctions. Can J For Res 36:1054–1058

    Article  Google Scholar 

  • Kang K-S (2000) Clonal and annual variation of flower production and composition of gamete gene pool in a clonal seed orchard of Pinus densiflora. Can J For Res 30:1275–1280

    Article  Google Scholar 

  • Kang K-S, El-Kassaby YA (2002) Considerations of correlated fertility between genders on genetic diversity: the Pinus densiflora seed orchard as a model. Theor Appl Genet 105:1183–1189

    Article  PubMed  Google Scholar 

  • Kang K-S, Lindgren D (1998) Fertility variation and its effect on the relatedness of seeds in Pinus densiflora, Pinus thunbergii and Pinus koraiensis clonal seed orchards. Silvae Genet 47:196–201

    Google Scholar 

  • Kang K-S, Lindgren D (1999) Fertility variation among clones of Korean pine (Pinus koraiensis S. et Z.) and its implications on seed orchard management. For Genet 6:191–200

    Google Scholar 

  • Kang K-S, Kjær ED, Lindgren D (2003) Balancing gene diversity and nut production in Corylus avellana collections. Scand J For Res 18:118–126

    Article  Google Scholar 

  • Kang K-S, Lindgren D, Mullin TJ (2001) Prediction of genetic gain and gene diversity in seed orchard crops under alternative management strategies. Theor Appl Genet 103:1099–1107

    Article  Google Scholar 

  • Kang K-S, Lindgren D, Mullin TJ (2004) Fertility variation, genetic relatedness, and their impacts on gene diversity of seeds from a seed orchard of Pinus thunbergii. Silvae Genet 53:202–206

    Google Scholar 

  • Kjær ED (1996) Estimation of effective population number in a Picea abies (Karst.) seed orchard based on flower assessment. Scand J For Res 11:111–121

    Article  Google Scholar 

  • Kjær ED, Wellendorf H (1998) Studies on the effect of unequal flowering on the effective population number in Danish seed orchard crops. Forest Tree Improvement 26:1–9

    Google Scholar 

  • Kroon J, Prescher F, Wennström U, Lindgren D (2007) Cone set over time for different clones in a Scots pine seed orchard. In: Prescher F (ed) Seed orchards—genetic considerations on function, management and seed procurement. Doctoral thesis No. 2007:75, The Swedish University of Agricultural Sciences, Umea, Sweden, p 22

  • Lindgren D, Danusevicius D (2008) Deployment of clones to seed orchards when candidates are related. In: Lindgren D (ed.) Proceedings of a seed orchard conference. Umeå, Sweden, pp 135–141

  • Lindgren D, El-Kassaby YA (1989) Genetic consequences of combining selective cone harvesting and genetic thinning in clonal seed orchards. Silvae Genet 38:65–70

    Google Scholar 

  • Lindgren D, Matheson AC (1986) Increasing the genetic quality of seed from seed orchards by using the better clones in higher proportions. Silvae Genet 35:173–177

    Google Scholar 

  • Lindgren D, Mullin TJ (1998) Relatedness and status number in seed orchard crops. Can J For Res 28:276–283

    Article  Google Scholar 

  • Lindgren D, Cui J, Son SG, Sonesson J (2004) Balancing seed yield and breeding value in clonal seed orchards. New Forests 28:11–22

    Article  Google Scholar 

  • Lindgren D, Gea LD, Jefferson PA (1996) Loss of genetic diversity monitored by status number. Silvae Genet 45:52–59

    Google Scholar 

  • Lindgren D, Tellalov Y, Prescher F (2007) Seed set for Scots pine grafts is difficult to predict. In: Isik F (ed.) Proceedings of the IUFRO Division 2 Joint Conference: Low input breeding and conservation of forest genetic resources. Antalya, Turkey, pp 139–141

  • Malécot G (1948) Les mathématiques de l'hérédité. Masson, Paris, p 65

    Google Scholar 

  • Matziris D (1994) Genetic variation in the phenology of flowering in black pine. Silvae Genet 43:321–328

    Google Scholar 

  • Meuwissen THE (1997) Maximizing the response of selection with a predefined rate of inbreeding. J Anim Sci 75:934–940

    PubMed  CAS  Google Scholar 

  • Moriguchi Y, Taira H, Tani N, Tsumura Y (2004) Variation of paternal contribution in a seed orchard of Cryptomeria japonica determined using microsatellite markers. Can J For Res 34:1683–1690

    Article  Google Scholar 

  • Nikkanen T, Velling P (1987) Correlations between flowering and some vegetative characteristics of grafts of Pinus sylvestris. Forest Ecol Manag 19:35–40

    Article  Google Scholar 

  • Prescher F (2007) Seed orchards—genetic considerations on function, management and seed procurement. Doctoral Dissertation No. 2007:75. Swedish University of Agricultural Sciences, Umeå.

  • Prescher F, Lindgren D, El-Kassaby YA (2006) Is linear deployment of clones optimal under different clonal outcrossing contributions in seed orchards? Tree Genetics & Genomes 2:25–29

    Article  Google Scholar 

  • Prescher F, Lindgren D, Karlsson B (2008) Genetic thinning of clonal seed orchards using linear deployment may improve both gain and diversity. Forest Ecol Manag 254:188–192

    Article  Google Scholar 

  • Roberds JH, Friedman ST, El-Kassaby YA (1991) Effective number of pollen parents in clonal seed orchards. Theor Appl Genet 82:313–320

    Article  Google Scholar 

  • Reynolds S, El-Kassaby YA (1990) Parental balance in a Douglas-fir seed orchard: cone vs. seed production. Silvae Genet 39:40–42

    Google Scholar 

  • Savolainen O, Karkkainen K, Harju A, Nikkanen T, Rusanen M (1993) Fertility variation in Pinus sylvestris: a test of sexual allocation theory. Am J Bot 80:1016–1020

    Article  Google Scholar 

  • Schoen DJ, Stewart SC (1986) Male reproductive investment and male reproductive success in white spruce. Evolution 40:1109–1120

    Article  Google Scholar 

  • Schoen DJ, Stewart SC (1987) Variation in male fertilities and pairwise mating probabilities in Picea glauca. Genetics 116:141–152

    PubMed  Google Scholar 

  • Slavov GT, Howe GT, Adams WT (2005) Pollen contamination and mating patterns in a Douglas-fir seed orchard as measured by simple sequence repeat markers. Can J For Res 35:1592–1603

    Article  CAS  Google Scholar 

  • Son SG, Kang K-S, Lindgren D, Hyun JO (2003) Qualification for the value of seed orchard considering breeding value and seed productivity. J Korean Forest Assoc 91:601–608

    Google Scholar 

  • Stoehr M, Webber J, Woods J (2004) Protocol for rating seed orchard seedlots in British Columbia: quantifying genetic gain and diversity. Forestry 77:297–303

    Article  Google Scholar 

  • Stoehr MU, Orvar BL, Vo TM, Gawley JR, Webber JE, Newton CH (1998) Application of a chloroplast DNA marker in seed orchard management evaluations of Douglas-fir. Can J For Res 28:187–195

    Article  CAS  Google Scholar 

  • Woods JH (2005) Methods for estimating gamete contributions to orchard seed crops and vegetative lots in British Columbia. B.C. Ministry of Forests and Range, Technical report 025. p 17

  • Xie CY, Knowles P (1992) Male fertility variation in an open-pollinated plantation of Norway spruce (Picea abies (L.) Karst.). Can J For Res 22:1463–1468

    Article  Google Scholar 

  • Xie CY, Woods J, Stoehr M (1994) Effects of seed orchard inputs on estimating effective population size of seedlots—a computer simulation. Silvae Genet 43:145–154

    Google Scholar 

  • Yanchuk AD (2001) A quantitative framework for breeding and conservation of forest tree genetic resources in British Columbia. Can J For Res 31:566–576

    Article  Google Scholar 

Download references

Acknowledgement

This work is partially funded by the Grant Agency of the Czech Republic (#521/07/P337, M.L. and J.K.; and #201/08/0486, P.L.), the Ministry of Agriculture of the Czech Republic (NAZV #QH81172, T.F., M.L., and J.K.), the Ministry of Education, Youth, and Sports of the Czech Republic (#MSM0021620839, P.L.), the National Science and Engineering Research Council of Canada (Y.A.E.), and the Forest Genetics Council of British Columbia (Y.A.E.). We thank R. Burdon and D. Lindgren for constructive suggestions and the MOSEK software development team for helpful ideas and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. El-Kassaby.

Additional information

Communicated by R. Burdon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funda, T., Lstibůrek, M., Lachout, P. et al. Optimization of combined genetic gain and diversity for collection and deployment of seed orchard crops. Tree Genetics & Genomes 5, 583–593 (2009). https://doi.org/10.1007/s11295-009-0211-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-009-0211-3

Keywords

Navigation