Skip to main content
Log in

Highly scab-resistant transgenic apple lines achieved by introgression of HcrVf2 controlled by different native promoter lengths

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Apple scab, caused by the ascomycete Venturia inaequalis, is the most damaging fungal disease of commercial apple orchards. Functional scab resistance genes are present in some wild Malus species. The HcrVf2 gene, derived from the Vf-region of the wild apple Malus floribunda 821 and encoding a receptor-like protein, has proved to confer scab resistance in a transgenic susceptible cultivar. In order to minimize nonplant DNA in genetically modified apple and to go a step toward the development of cisgenic apples, we have studied the capability of the HcrVf2 gene to confer apple scab resistance when it is controlled by its own promoter. Three promoter deletion constructs containing 115, 288, and 779 bp of the 5′ untranslated region and the HcrVf2 gene were used to transform the scab susceptible apple cvs. ‘Gala’ and ‘Elstar.’ The influence of the promoter length on both the HcrVf2 expression level and the response to V. inaequalis was analyzed in different transgenic lines. Promoter length was found to influence both the constitutive transcription levels of HcrVf2 in transgenic lines and the resistance level. Highly scab resistant ‘Elstar’ and ‘Gala’ plants were obtained, proving that the HcrVf2 gene controlled by its native promoter is effective in conferring resistance to V. inaequalis similarly as Vf introgressed in apple cvs. through classical breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower mosaic virus

gus:

β-Glucoronidase

IBA:

Indole-3-butyric acid

MS:

Murashige and Skoog

NAA:

1-Naphthalene acetic acid

TDZ:

Thidiazuron

YEP:

Yeast extract broth

QTL:

Quantitative trait locus

References

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Nat Acad Sci USA 101:886–890

    Article  PubMed  CAS  Google Scholar 

  • Bolar JP, Norelli JL, Wong KW, Hayes K, Harman GE, Aldwinckle HS (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77

    Article  PubMed  CAS  Google Scholar 

  • Bolar JP, Norelli JL, Wong KW, Hayes K, Harman GE, Brown SK, Aldwinckle HS (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res 10:533–543

    Article  PubMed  CAS  Google Scholar 

  • Chevalier M, Lespinasse Y, Renaudin S (1991) A microscopic study of different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis). Plant Pathol 40:249–256

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Faize M, Sourice S, Dupuis F, Parisi L, Gautier MF, Chevreau E (2004) Expression of wheat puroindoline-b reduces scab susceptibility in transgenic apple (Malus × domestica Borkh.). Plant Sci 167:347–354

    Article  CAS  Google Scholar 

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503

    Article  CAS  Google Scholar 

  • Gessler C, Patocchi A, Kellerhals M, Gianfranceschi L (1997) Molecular markers applied to apple breeding and map-based cloning of resistance genes. In: Berrie, Xu, Harris, Roberts, Evans, Barbara and Gessler, (eds): Integrated control of pome fruit diseases IV, OILB-WPRS Bulletin 20:105–109

  • Gianfranceschi L, Koller B, Seglias N, Kellerhals M, Gessler C (1996) Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor Appl Genet 93:199–204

    Article  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium vectors for plant transformation. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Krens FA, Pelgrom KTB, Schaart JG, den Nijs APM, Rouwendal GJA (2004) Clean vector technology for marker free transgenic fruit crops. Acta Hortic 663:431–435

    CAS  Google Scholar 

  • Li H, Flachowsky H, Fischer T, Hanke V, Forkmann G, Treutter D, Schwab W, Hoffmann T, Szankowski I (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226:1243–1254

    Article  PubMed  CAS  Google Scholar 

  • MacHardy WE (1996) Apple scab. APS, St. Paul, pp 29–38

    Google Scholar 

  • Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased resistance in Malus x domestica. Mol Plant Microbe Interact 20:1568–1580

    Article  PubMed  CAS  Google Scholar 

  • Malnoy M, Xu M, Borejsza-Wysocka E, Korban SS, Aldwinckle HS (2008) Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant Microbe Interact 21:448–458

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Puite KJ, Schaart JG (1996) Genetic modification of the commercial apple cultivars Gala, Golden Delicious and Elstar via an Agrobacterium tumefaciens-mediated transformation. Plant Sci 119:125–133

    Article  CAS  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006a) Cisgenic plants are similar to traditionally bred plants. EMBO Reports 7:750–753

    Article  PubMed  CAS  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006b) Do cisgenic plants warrant less stringent oversight? Nature Biotechnol 24:9

    Article  Google Scholar 

  • Silfverberg-Dilworth E, Besse S, Paris R, Belfanti E, Tartarini S, Sansavini S, Patocchi A, Gessler C (2005) Identification of functional apple scab resistance gene promoters. Theor Appl Genet 110:1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  PubMed  CAS  Google Scholar 

  • Szankowski I, Briviba K, Fleschhut J, Schönherr J, Jacobsen HJ, Kiesecker H (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep 22:141–149

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De PK, Pattyn F, Poppe B, Van RN, De PA, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12

    Article  Google Scholar 

  • Vaucheret H, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC, Vernhettes S (1998) Transgene-induced gene silencing in plants. Plant J 16:651–659

    Article  PubMed  CAS  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001) Apple (Malus sp.) contains receptor-like genes homologous to the Cf resistance gene family of tomato with a cluster of such genes co-segregating with Vf apple scab resistance. Mol Plant Microbe Interact 14:508–515

    Article  PubMed  CAS  Google Scholar 

  • Vinatzer BA, Zhang HB, Sansavini S (1998) Construction and characterization of a bacterial artificial chromosome library of apple. Theor Appl Genet 97:1183–1190

    Article  CAS  Google Scholar 

  • Xu ML, Korban SS (2002) A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 162:1995–2006

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support by the Swiss National Science Foundation NRP59 grant 405940-115591. JD thanks CAPES, Brazil, for receiving a scholarship and both JD and SW thank Stiftung Gisela, Germany, for financial support. The authors acknowledge COST Action 864.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Szankowski.

Additional information

Communicated by E. Dirlewanger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szankowski, I., Waidmann, S., Degenhardt, J. et al. Highly scab-resistant transgenic apple lines achieved by introgression of HcrVf2 controlled by different native promoter lengths. Tree Genetics & Genomes 5, 349–358 (2009). https://doi.org/10.1007/s11295-008-0191-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-008-0191-8

Keywords

Navigation