Tree Genetics & Genomes

, Volume 5, Issue 1, pp 11–25 | Cite as

What are the consequences of growth selection on wood density in the French maritime pine breeding programme?

  • Laurent Bouffier
  • Annie RaffinEmail author
  • Philippe Rozenberg
  • Céline Meredieu
  • Antoine Kremer
Original Paper


Volume and stem straightness were the main selection criteria for the first two generations of the French maritime pine (Pinus pinaster Ait.) breeding programme. In this article, we investigate the consequences of this selection on wood quality. Wood density, as a predictor of wood quality, is studied both in the breeding populations and in commercial varieties. Phenotypic and genetic correlations between wood density and growth traits are investigated in successive breeding populations with three genetic field experiments of respectively 30, 29 and 12 years old. Correlation estimates were either slightly negative or non-significantly different from zero depending on the test considered. Consequently, a low impact of growth selection on wood quality should be expected in improved seed sources. However, we observed a significant wood density decrease in two improved varieties as compared to unimproved seed sources at age 15. In addition to this first effect on wood density, growth improvement is also expected to reduce the rotation age and thus increase the proportion of juvenile wood, which is known as having a lower density than mature wood. This change was studied and quantified using a growth model. Finally, a wood density decrease reaching up to 6% was predicted in the improved varieties compared to unimproved material, when both the observed decrease in wood density and the predicted increase in juvenile wood proportion were taken into account. Implications for the breeding programme were considered.


Pinus pinaster Ait. Correlation Wood density Growth Juvenile wood 



Field assistance was provided by the INRA, “Unité expérimentale de l’Hermitage”, namely Christophe Gauvrit, Bernard Issenhut, Henri Bignalet, as well as Dominique Charon and Céline Charlot. Morcenx increment cores were cut by Frédéric Lagane. All microdensity X-ray photographs were obtained at INRA Orléans, France, by Frédéric Millier.

We appreciated the discussions with Patrick Castera from “Unité Sciences du Bois et des Polymères” on wood quality and the help of Thierry Labbé from INRA, “Ephyse” for growth simulations. Florence Jaffrezic gave precious advices for genetic analysis.

This work was supported by funding from the French Ministry of Agriculture and the Région Aquitaine by ways of the GIS “Pin Maritime du Futur”.


  1. Baradat P (1987) Méthode d’évaluation de la consanguinité chez les plants issus des vergers à graines de semis de première génération. Silvae Genet 36:134–144Google Scholar
  2. Baradat P, Durel C-E, Pastuszka P (1992) The polycross seed orchard: an original concept. In: Proceedings of the IUFRO–AFOCEL Symposium, Mass Production Technology for Genetically Improved Fast Growing Forest Tree Species, Tome II, Editions AFOCEL, Bordeaux, France, pp 53–62Google Scholar
  3. Bouffier L, Rozenberg P, Raffin A, Kremer A (2008) Wood density variability in successive breeding populations of maritime pine. Can J For Res (in press)Google Scholar
  4. Bridgwater FE, Talbert JT, Jahromi S (1983) Index selection for increased dry weight in a young Loblolly pine population. Silvae Genet 32:157–161Google Scholar
  5. Cameron AD, Lee SJ, Livingston AK, Petty JA (2005) Influence of selective breeding on the development of juvenile wood in Sitka spruce. Can J For Res 35:2951–2960CrossRefGoogle Scholar
  6. Cown DJ (1992) Corewood (juvenile wood) in Pinus radiata—should we be concerned. N Z J For Sci 22:87–95Google Scholar
  7. Cown DJ, Young GD, Burdon RD (1992) Variation in wood characteristics of 20-year-old half-sib families of Pinus radiata. N Z J For Sci 22(1):63–76Google Scholar
  8. DeBell DS, Singleton R, Gartner BL, Marshall DD (2004) Wood density of young-growth western hemlock: relation to ring age, radial growth, stand density, and site quality. Can J For Res 34:2433–2442CrossRefGoogle Scholar
  9. De Coligny F, Ancelin P, Cornu G, Courbaud B, Dreyfus P, Goreaud F et al (2003) CAPSIS: computer-aided projection for strategies in silviculture, advantages of a shared forest-modelling platform. In: Amaro A, Reed D, Soares P (eds) Modelling forest systems. CABI, Wallingford, pp 319–323Google Scholar
  10. Durel C-E (1992) Gains génétiques attendus après sélection sur index en seconde génération d’amélioration du pin maritime. Rev For Fr 44(4):341–355CrossRefGoogle Scholar
  11. Dutilleul P, Herman M, Avella-Shaw T (1998) Growth rate effects on correlations among ring width, wood density, and mean tracheid length in Norway spruce (Picea abies). Can J For Res 28:56–68CrossRefGoogle Scholar
  12. El Alami A, Sbay H, Sesbou A, Hachmi M (1996) Variabilité intraspécifique de quelques caractères de croissance et de qualité du bois chez le pin maritime. Ann Rech For Maroc 29:57–70Google Scholar
  13. Fujimoto T, Kita K, Uchiyama K, Kuromaru M, Akutsu H, Oda K (2006) Age trends in the genetics parameters of wood density and the relationship with growth rates in hybrid larch (Larix gmelinii var. japonica × L. kaempferi) F1. J For Res 11:157–163CrossRefGoogle Scholar
  14. Gapare WJ, Wu HX, Abarquez A (2006) Genetic control of the time of transition from juvenile to mature wood in Pinus radiata D. Don. Ann For Sci 63:871–878CrossRefGoogle Scholar
  15. Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R (2002) ASReml User Guide Release 1.0 VSN International Ltd, Hemel Hempstead, HP1 1ES, UKGoogle Scholar
  16. GIS, collective work, Alazard P, Canteloup D, Cremiere L, Daubet A, Lesgourgues Y, Merzeau D, Pastuszka P, Raffin A (2002) Genetic breeding of the maritime pine in Aquitaine, GIS Work ReportGoogle Scholar
  17. Guay R, Gagnon R, Morin H (1992) A new automatic and interactive tree-ring measurement system based on a line scan camera. Forest Chron 68(1):138–141Google Scholar
  18. Gwaze DP, Bridgwater FE, Byram TD, Lowe WJ (2001) Genetic parameter estimates for growth and wood density in Loblolly pine (Pinus taeda L). Forest Gen 8(1):47–55Google Scholar
  19. Hannrup B, Ekberg I, Persson A (2000) Genetic correlations among wood, growth capacity and stem traits in Pinus sylvestris. Scand J For Res 15:161–170CrossRefGoogle Scholar
  20. Hill P (2000) Wood density of improved compared with unimproved maritime pine (Pinus pinaster). CALMScience 3(3):309–315Google Scholar
  21. Hylen G (1997) Genetic variation of wood density and its relationship with growth traits in young Norway spruce. Silvae Genet 46:55–60Google Scholar
  22. Hylen G (1999) Age trends in genetic parameters of wood density in young Norway spruce. Can J For Res 29:135–143CrossRefGoogle Scholar
  23. Johnson GR, Gartner BL (2006) Genetic variation in basic density and modulus of elasticity of coastal Douglas-fir. Tree Gen Genom 3:25–33CrossRefGoogle Scholar
  24. Kumar S (2004) Genetic parameter estimates for wood stiffness, strength, internal checking, and resin bleeding for radiata pine. Can J For Res 34:2601–2610CrossRefGoogle Scholar
  25. Kumar S, Jayawickrama KJS, Lee J, Lausberg M (2002) Direct and indirect measures of stiffness and strength show high heritability in a wind-pollinated radiata pine progeny test in New Zealand. Silvae Genet 51(5–6):256–261Google Scholar
  26. Kumar S, Lee J (2002) Age–age correlations and early selection for end-of-rotation wood density in radiata pine. Forest Genetics 9(4):323–330Google Scholar
  27. Lemoine B (1991) Growth and yield of maritime pine (Pinus pinaster Ait): the average dominant tree of the stand. Ann For Sci 48:593–611CrossRefGoogle Scholar
  28. Li L, Wu HX (2005) Efficiency of early selection for rotation-aged growth and wood density traits in Pinus radiata. Can J For Res 35:2019–2029CrossRefGoogle Scholar
  29. Livingston AK, Cameron AD, Petty JA, Lee SL (2004) Effect of growth rate on wood properties of genetically improved Sitka spruce. Forestry 77(4):325–334CrossRefGoogle Scholar
  30. Loo JA, Tauer CG (1984) Juvenile–mature relationships and heritability estimates of several traits in loblolly pine (Pinus taeda). Can J For Res 14:822–825CrossRefGoogle Scholar
  31. Louzada JLPC (2003) Genetic correlations between wood density components in Pinus pinaster Ait. Ann For Sci 60:285–294CrossRefGoogle Scholar
  32. Louzada JLPC, Fonseca FMA (2002) The heritability of wood density components in Pinus pinaster Ait and the implications for tree breeding. Ann For Sci 59:867–873CrossRefGoogle Scholar
  33. Matziris DI, Zobel BJ (1973) Inheritance and correlations of juvenile characteristics in Loblolly pine (Pinus taeda L). Silvae Genet 22(1/2):38–45Google Scholar
  34. Mutz R, Guilley E, Sauter UH, Nepveu G (2004) Modelling juvenile–mature wood transition in Scots pines (Pinus sylvestris L.) using nonlinear mixed-effects models. Ann For Sci 61:831–841CrossRefGoogle Scholar
  35. Nicholls JWP, Morris JD, Pederick LA (1980) Heritability estimates of density characteristics in juvenile Pinus radiata wood. Silvae Genet 29(2):54–61Google Scholar
  36. Polge H (1966) Etablissement des courbes de variation de la densité du bois par exploration densitométrique de radiographies d’échantillons prélevés à la tarière sur des arbres vivants. Ann For Sci 23(1):1–206CrossRefGoogle Scholar
  37. Polge H, Illy G (1968) Héritabilité de la densité du bois et corrélations avec la croissance étudiées à l’aide de tests non destructifs sur plants de Pins maritimes de quatre ans. Silvae Genet 17:173–181Google Scholar
  38. Pot D, Chantre G, Rozenberg P, Rodrigues JC, Jones GL, Pereira H, Hannrup B, Cahalan C, Plomion C (2002) Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait). Ann For Sci 59:563–575CrossRefGoogle Scholar
  39. Reuling D (2005) Potentiel d’utilisation du Pin maritime dans la construction en fonction des conditions de croissance définies dans le modèle Pp3. Master of Science, Université Bordeaux1 France, p 70Google Scholar
  40. Rozenberg P, Cahalan C (1997) Spruce and wood quality: genetics aspects (a review). Silvae Genet 46:270–279Google Scholar
  41. Salas-González R, Houllier F, Lemoine B, Pignard G (2001) Forecasting wood resources on the basis of national forest inventory data. Application to Pinus pinaster Ait in southwestern France. Ann For Sci 58:785–802CrossRefGoogle Scholar
  42. Vargas-Hernandez J, Adams WT (1992) Age–age correlations and early selection for wood density in young coastal Douglas-fir. Forest Science 38(2):467–478Google Scholar
  43. Von Euler F, Baradat P, Lemoine B (1992) Effects of plantation density and spacing on competitive interactions among half-sib families of maritime pine. Can J For Res 22:482–489CrossRefGoogle Scholar
  44. Wu HX, Yang J, McRae TA, Li L, Powell MB (2004) Genetic relationship between breeding objective and early selection criterion traits in Australia radiata pine population. CSIRO Forestry and Forest Technical Report 1402 and Southern Tree Breeding Association Technical Report TR04-01, CSIRO, CanberraGoogle Scholar
  45. Yanchuk AD, Kiss GK (1993) Genetic variation in growth and wood specific gravity and its utility in the improvement of interior spruce in British Columbia. Silvae Genet 42:141–148Google Scholar
  46. Zamudio F, Baettig R, Vergara A, Guerra F, Rozenberg P (2002) Genetic trends in wood density and radial growth with cambial age in a radiata pine progeny test. Ann For Sci 59:541–549CrossRefGoogle Scholar
  47. Zamudio F, Rozenberg P, Baettig R, Vergara A, Yañez M, Gantz C (2005) Genetic variation of wood density components in a radiata pine progeny test located in the south of Chile. Ann For Sci 62:105–114CrossRefGoogle Scholar
  48. Zobel BJ, Jett J (1995) Genetics of wood production. Springer, BerlinGoogle Scholar
  49. Zobel BJ, Sprague JR (1998) Juvenile wood in forest trees. Springer, BerlinGoogle Scholar
  50. Zobel BJ, Van Buijtenen JP (1989) Wood variation: its causes and control. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Laurent Bouffier
    • 1
  • Annie Raffin
    • 1
    • 3
    Email author
  • Philippe Rozenberg
    • 2
  • Céline Meredieu
    • 1
  • Antoine Kremer
    • 1
  1. 1.INRA, UMR1202 Biodiversity Genes & CommunitiesCestasFrance
  2. 2.INRA, UR Amélioration, Génétique et Physiologie ForestièresArdonFrance
  3. 3.INRA, UMR BIOGECOCestasFrance

Personalised recommendations