Skip to main content
Log in

Phylogeography of Larix sukaczewii Dyl. and Larix sibirica L. inferred from nucleotide variation of nuclear genes

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

We investigated phylogeography of Larix sukaczewii and Larix sibirica using nucleotide variation at three following nuclear gene regions: 5.8 S rDNA including two internal transcribed spacers (ITS), cinnamyl alcohol dehydrogenase (CAD), and phytochrome-O (PHYO). We also included sequences of the 4-coumarate: coenzyme A ligase (4CL) gene region obtained in our recent study. CAD and PHYO showed very low nucleotide variation, but ITS and 4CL had levels of variation similar to those reported for other conifers. Pleistocene refugia have been hypothesized to exist in the Southern Urals and South Central Siberia, where four out of nine of the investigated populations occur. We found moderate to high levels of population differentiation (F ST  = 0.115 – 0.531) in some pairwise comparisons suggesting limited gene flow and independent evolution of some refugial populations. In L. sukaczewii, low levels of differentiation were found among populations from areas glaciated during the Pleistocene, indicating their recent origin. Our results also suggest these populations were created by migrants from multiple, genetically distinct refugia. Furthermore, some haplotypes observed in populations from previously glaciated areas were not found in putative refugial populations, suggesting these populations might have contributed little to the extant populations created after the Last Glacial Maximum. Some authors regard L. sukaczewii and L. sibirica as a single species, while others consider them as separate species. The observed conspicuous differences in haplotype composition and distribution between L. sukaczewii and L. sibirica, together with high values of F ST between populations of the two species, appear to support the latter classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abaimov AP, Barzut VM, Berkutenko AN, Buitnk J, Martinsson O, Milyutin LI, Polezhaev A, Putenikhin VP, Katsuhiko T (2002) Seed collection and seed quality of Larix spp. from Russia—initial phase of the Russian–Scandinavian Larch project. Eur J For Research 4:39–49

    Google Scholar 

  • Abaimov AP, Lesinski JA, Martinsson O, Milyutin LI (1998) Variability and ecology of Siberia Larch species. Department of Silviculture, Report No. 43. Swedish University of Agricultural Sciences, Umeå, p 123

    Google Scholar 

  • Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phyl Evol 29:417–434

    Article  CAS  Google Scholar 

  • Bailey CD, Carr TG, Harris SA, Hughes CE (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol Phyl Evol 29:435–455

    Article  CAS  Google Scholar 

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    PubMed  CAS  Google Scholar 

  • Bashalkhanov SI, Konstantinov YM, Verbitskii DS, Kobzev VF (2003) Reconstruction of phylogenetic relationships of larch Larix sukaczewii Dyl. based on chloroplast DNA trnK intron sequences. Rus J Genet 39:1322–1327

    Article  CAS  Google Scholar 

  • Blyakharchuk TA, Wright HE, Borodavko PS, van der Knaap WO, Ammann B (2004) Late Glacial Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Palaeogeogr Palaeoclimatol Palaeoecol 209:259–279

    Article  Google Scholar 

  • Brown KR, Zobel D, Zasada J (1988) Seed dispersal, seedling emergence and early survival of Larix laricina (DuRoi) K. Koch in the Tanana Valley, Alaska. Can J Forest Res—Revue Can Rech For 18:306–314

    Google Scholar 

  • Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci U S A 101:15255–15260

    Article  PubMed  CAS  Google Scholar 

  • Campbell CS, Wright WA, Cox M, Vining TF, Smoot Major C, Arsenault MP (2005) Nuclear ribosomal DNA internal transcribed spacer 1 (ITS1) in Picea (Pinaceae): sequence divergence and structure. Mol Phyl Evol 35:165–185

    Article  CAS  Google Scholar 

  • Duncan D (1954) A study of some of the factors affecting the natural regeneration of tamarack (Larix laricina) in Minnesota. Ecology 35:498–521

    Article  Google Scholar 

  • Dvornyk V, Sirvio A, Mikkonen M, Savolainen O (2002) Low nucleotide diversity at the pal1 locus in the widely distributed Pinus sylvestris. Mol Biol Evol 19:179–188

    PubMed  CAS  Google Scholar 

  • Dylis NV (1947) In: Sibirskaya listvennitsa. Moskovskoye Obshchestvo Ispytatelnej Prirody, Novaya seria. Otdel’ botanicheskij, Moscow

    Google Scholar 

  • Filatov DA (2002) PROSEQ: A software for preparation and evolutionary analysis of DNA sequence data sets. Mol Ecol Notes 2:621–624

    Article  CAS  Google Scholar 

  • Franzke A, Hurka H, Janssen D, Neuffer B, Friesen N, Markov M, Mummenhoff K (2004) Molecular signals for Late Tertiary Early Quaternary range splits of an Eurasian steppe plant: Clausia aprica (Brassicaceae). Mol Ecol 13:2789–2795

    Article  PubMed  CAS  Google Scholar 

  • Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Garcia-Gil MR, Mikkonen M, Savolainen O (2003) Nucleotide diversity at two phytochrome loci along a latitudinal cline in Pinus sylvestris. Mol Ecol 12:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Gernandt DS, Liston A (1999) Internal transcribed spacer region evolution in Larix and Pseudotsuga (Pinaceae). Am J Bot 86:711–723

    Article  PubMed  CAS  Google Scholar 

  • Gernandt DS, Liston A, Pinero D (2001) Variation in the nrDNA ITS of Pinus Subsection Cembroides: implications for molecular systematic studies of pine species complexes. Mol Phyl Evol 21:449–467

    Article  CAS  Google Scholar 

  • Gros-Louis MC, Bousquet J, Pâques LE, Isabel N (2005) Species-diagnostic markers in Larix spp. based on RAM and nuclear, cpDNA, and mtDNA gene sequences, and their phylogenetic implications. Tree Genet Genom 1:50–63

    Article  Google Scholar 

  • Hall J (1986) Growth and development of larch in Newfoundland. In: Murray MB (ed) Sixth International Workshop on Forest Regeneration: The Yield Advantages of Artificial Regeneration at High Altitudes. USDA Forest Service General Technical Report PNW-194

  • Hess J, Kadereit JW, Vargas P (2000) The colonization history of Olea europaea L. in Macaronesia based on internal transcribed spacer 1 (ITS-1) sequences, randomly amplified polymorphic DNAs (RAPD), and intersimple sequence repeats (ISSR). Mol Ecol 9:857–868

    Article  PubMed  CAS  Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  PubMed  CAS  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Phil Transact Royal Soc London: Biol Sci 359:183–195

    Article  CAS  Google Scholar 

  • Holderegger R, Abbott RJ (2003) Phylogeography of the Arctic-Alpine Saxifraga oppositifolia (Saxifragaceae) and some related taxa based on cpDNA and its sequence variation. Am J Bot 90:931–936

    Article  CAS  Google Scholar 

  • Hudson R (2002) Generating samples under Wright-Fisher neutral model of genetic variation. Bioinformatics 18:337–338

    Article  PubMed  CAS  Google Scholar 

  • Hudson R, Kreitman M, Aguade M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116:153–159

    PubMed  CAS  Google Scholar 

  • Hudson RR, Coyne JA (2002) Mathematical consequences of the genealogical species concept. Evolution 56:1557–1565

    PubMed  Google Scholar 

  • Hudson RR, Slatkin M, Maddison WP (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132:583–589

    PubMed  CAS  Google Scholar 

  • Ish-Horowicz D (1989) Isolation of DNA from adult flies. In: Ashburner, M. (ed) Drosophila. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbour

    Google Scholar 

  • Jeandroz S, Roy A, Bousquet J (1997) Phylogeny and phylogeography of the circumpolar genus Fraxinus (Oleaceae) based on internal transcribed spacer sequences of nuclear ribosomal DNA. Mol Phyl Evol 7:241–251

    Article  CAS  Google Scholar 

  • Kado T, Yoshimaru H, Tsumura Y, Tachida H (2003) DNA Variation in a Conifer, Cryptomeria japonica (Cupressaceae sensu lato). Genetics 164:1547–1559

    PubMed  CAS  Google Scholar 

  • Khatab IA, Ishiyama H, Inomata N, Wang X-R, Szmidt AE (2008) Phylogeography of Eurasian Larix species inferred from nucleotide variation in two nuclear genes. Genes Genet Syst 83: in press

  • Knowles P, Perry D, Foster H (1992) Spatial genetic structure in two tamarack (Larix laricina (Du Roi) K. Koch) populations with differing establishment histories. Evolution 46:572–576

    Article  Google Scholar 

  • Kozyrenko MM, Artyukova EV, Reunova GD, Levina EA, Zhuravlev YN (2004) Genetic Diversity and Relationships Among Siberian and Far Eastern larches Inferred from RAPD Analysis. Rus J Genet 40:401–409

    Article  CAS  Google Scholar 

  • Kropf M, Kandereit J, Comes H (2003) Differential cycles of range contraction and expansion in European high mountain plants during the late Quaternary: insights from Pritzelago alpine (L.) Kuntze (Brassicaceae). Mol Ecol 12:931–949

    Article  PubMed  CAS  Google Scholar 

  • Kullman L (1998) Paleoecological, biogeographical and paleoclimatological implications of early Holocene immigration of Larix sibirica into the Scandes mountains, Sweden. Global Ecol Biogeo Lett 1:5

    Google Scholar 

  • Larionova AY, Yakhneva NV, Abaimov AP (2004) Genetic diversity and differentiation of Gmelin larch Larix gmelinii populations from Evkenia (Central Siberia). Rus J Genet 40:1127–1133

    Article  CAS  Google Scholar 

  • Lewandowski A (1997) Genetic relationships between European and Siberian larch, Larix spp. (Pinaceae), studied by allozymes. Is the Polish larch a hybrid between these two species. Plant Syst Evol 204:65–73

    Article  Google Scholar 

  • Lewandowski A, Nikkanen T, Burczyk J (1994) Production of hybrid seed in a seed orchard of two Larch Species, Larix sibirica and Larix decidua. Scand J For Res 9:214–217

    Article  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • Ma XF, Szmidt AE, Wang XR (2006) Genetic structure and evolutionary history of a diploid hybrid pine Pinus densata inferred from the nucleotide variation at seven gene loci. Mol Biol Evol 23:807–816

    Article  PubMed  CAS  Google Scholar 

  • MacKay JJ, Liu W, Whetten R, Sederoff RR, O’Malley DM (1995) Genetic analysis of cinnamyl alcohol dehydrogenase in loblolly pine: single gene inheritance, molecular characterization and evolution. Mol Genet Genom 247:537–545

    Article  CAS  Google Scholar 

  • Milyutin L, Vishnevetskaia K (1995) Larch and Larch Forest in Siberia. In: Schmidt WC, McDonald KJ (eds) Ecology and Management of Larix forests: a look ahead. U.S.D.A. Forest Service Intermountain Research Station GTR-INT-319, Whitefish, pp 19–29

    Google Scholar 

  • Muratova E (1991) Karyotypic analysis of Larix sibirica (Pinaceae) from various parts of the species area. Bot Zh 76:1586–1595

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Owens J, Takaso T, Runions C (1998) Pollination in conifers. Trends Plant Sci 3:479–485

    Article  Google Scholar 

  • Reeder J, Höchsmann M, Rehmsmeier M, Voss B, Giegerich R (2006) Beyond Mfold: recent advances in RNA bioinformatics. J Biotec 124:41–55

    Article  CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols. Meth Mol Biol 132:365–386

  • Schubert R, Sperisen C, Müller-Starck G, Lascala S, Ernst D, Sandermann Jr H, Hager KP (1998) The cinnamyl alcohol dehydrogenase gene structure in Picea abies (L.) Karst.: genomic sequences, Southern hybridization, genetic analysis and phylogenetic relationships. Trees - Struct Funct 12:453–463

    Google Scholar 

  • Semerikov V, Lascoux M (2003) Nuclear and cytoplasmic variation within and between Eurasian Larix (Pinaceae) species. Am J Bot 90:1113–1123

    Article  CAS  Google Scholar 

  • Semerikov VL, Iroshnikov AI, Lascoux M (2007) Mitochondrial DNA variation pattern and postglacial history of the Siberian Larch (Larix sibirica Ledeb.). Rus J Ecol 38:163–171

    Google Scholar 

  • Semerikov VL, Lascoux M (1999) Genetic relationship among Eurasian and American Larix species based on allozymes. Heredity 83:62–70

    Article  PubMed  CAS  Google Scholar 

  • Semerikov VL, Semerikov LF, Lascoux M (1999) Intra- and interspecific allozyme variability in Eurasian Larix Mill. species. Heredity 82:193–204

    Article  CAS  Google Scholar 

  • Sharrock RA, Quail PH (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Develop 3:1745–1757

    Article  PubMed  CAS  Google Scholar 

  • Simurda M, Knox J (2000) ITS sequence evidence for the disjunct distribution between Virginia and Missouri of the narrow endemic Helenium virginicum (Asteraceae). J Torrey Bot Soc 127:316–323

    Article  Google Scholar 

  • Svendsen JI, Astakhov VI, Bolshiyanov DY, Demidov I, Downdeswell JA, Gataullin V, Hjort C, Hubberten HW, Larsen E, Mangerud J, Melles M, Möller P, Saarnisto M, Siegert MJ (1999) Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian. Boreas 28:134–242

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Tarasov PE, Volkova VS, Webb TW III, Guiot J, Andreev AA, Bezusko LG, Bezusko TV, Bykova GV, Dorofeyuk NI, Kvavadze EV, Osipova IM, Panova NK, Sevastyanov DV (2000) Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J Biogeo 27:609–620

    Article  Google Scholar 

  • Thomson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  Google Scholar 

  • Timerjanov AS (1997) Lack of allozyme variation in Larix sukaczewii Dyl. from the southern Urals. Silvae Genet 46:61–64

    Google Scholar 

  • Wagner A, Blackstone N, Cartwright P, Dick M, Misof B, Snow P, Wagner GP, Bartels J, Murtha M, Pendleton J (1994) Surveys of gene families using polymerase chain reaction - PCR selection and PCR drift. Syst Biol 43:250–261

    Article  Google Scholar 

  • Wang XQ, Tank DC, Sang T (2000) Phylogeny and divergence times in Pinaceae: Evidence from three genomes. Mol Biol Evol 17:773–781

    PubMed  CAS  Google Scholar 

  • Watterson G (1975) On the number of segregating sites in genetical models without recombination. Theor Pop Biol 7:256–276

    Article  CAS  Google Scholar 

  • Wei H-X, Wang X-Q, Hong D-Y (2003) Marked intergenomic heterogeneity and geographical differentiation of nrDNA ITS in Larix potaninii (Pinaceae). J Mol Evol 57:623–635

    Article  PubMed  CAS  Google Scholar 

  • Wei XX, Wang XQ (2003) Phylogenetic split of Larix: evidence from paternally inherited cpDNA trnT-trnF region. Plant Syst Evol 239:67–77

    Article  Google Scholar 

  • Wei XX, Wang XQ (2004a) Evolution of 4-coumarate: coenzyme A ligase (4CL) gene and divergence of Larix (Pinaceae). Mol Phyl Evol 31:542–553

    Article  CAS  Google Scholar 

  • Wei XX, Wang XQ (2004b) Recolonization and radiation in Larix (Pinaceae): evidence from nuclear ribosomal DNA paralogues. Mol Ecol 13:3115–3123

    Article  PubMed  CAS  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013

    Article  PubMed  CAS  Google Scholar 

  • Widmer A (2001) Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. Trends Ecol Evol 16:267–269

    Article  PubMed  Google Scholar 

  • Young J, Young C (1992) Larix Mill., larch. In: Dudky T (ed) Seeds of woody plants in North America. Dioscorides, Portland

    Google Scholar 

Download references

Acknowledgements

We wish to thank Drs. Ove Martinsson JiLU, Bispgården, Sweden and Katsuhiko Takata, Institute of Wood Technology Akita Prefectural University, Japan for providing seed samples. We also wish to thank Dr. Vladimir L. Semerikov, Institute of Plant and Animal Ecology, Ural Division, Russian Academy of Sciences, Yekaterinburg, Russia for help in obtaining literature related to morphological studies on L. sukaczewii and L. sibirica. This work was partly supported by Grant No. 16-260 from the Sasakawa Scientific Research Grant, The Japan Science Society to NHTA and by the Grants No. 13575002 and 17405032 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan to AES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred E. Szmidt.

Additional information

Communicated by S. Aitken

Ismael A. Khatab and Kariyawasam K.G.U. Hemamali contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

S1

(PDF 58.9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araki, N.H.T., Khatab, I.A., Hemamali, K.K.G.U. et al. Phylogeography of Larix sukaczewii Dyl. and Larix sibirica L. inferred from nucleotide variation of nuclear genes. Tree Genetics & Genomes 4, 611–623 (2008). https://doi.org/10.1007/s11295-008-0137-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-008-0137-1

Keywords

Navigation