Tree Genetics & Genomes

, 1:93 | Cite as

Analysis of the distribution of marker classes in a genetic linkage map: a case study in Norway spruce (Picea abies karst)

  • Ivan Scotti
  • Andrea Burelli
  • Federica Cattonaro
  • David Chagné
  • John Fuller
  • Peter E. Hedley
  • Gunnar Jansson
  • Celine Lalanne
  • Delphine Madur
  • David Neale
  • Christophe Plomion
  • Wayne Powell
  • Michela Troggio
  • Michele Morgante
Original Paper


In order to analyze the large-scale structure of the genome of Norway spruce (Picea abies Karst.), a pseudo-testcross genetic linkage map was built using markers of six different types, belonging to the low (amplified fragment length polymorphisms, simple sequence repeats) or high (sequence-specific amplified polymorphisms, inter-retrotransposon amplified polymorphisms) copy-number fraction of the genome, and including expressed region-derived markers (expressed sequence tag polymorphisms). Twenty seven and 23 linkage groups of at least four markers were obtained for the female and the male parent maps, respectively. A subset of these linkage groups coalesced into 13 bi-parental linkage groups through markers shared between the two maps. This map was used to investigate the frequency of each marker type over chromosomes and the distribution of marker types relative to each other, using autocorrelation techniques. Our results show that, while the composition of chromosomes is homogeneous, low- and high-copy-number markers tend to occupy separate regions of the linkage groups, and that expressed sequences are preferentially associated with microsatellites and separated from retrotransposons. These results indicate that the spatial structure of Norway spruce chromosomes is not homogeneous.


Picea abies Conifers Linkage map Genome structure Molecular markers Autocorrelation 



This project was supported by the EU grant no. BIO4-CT972125 “ANACONGEN.” The authors wish to thank Nicoletta Felice for technical support.

Supplementary material

11295_2005_12_MOESM1_ESM.pdf (41 kb)
EST markers (a) reference for each marker (b) Primer sequences for five new markers. Five additional markers will be described in a subsequent paper (PDF 42 kb)
11295_2005_12_MOESM2_ESM.pdf (99 kb)
“Inclusive” linkage map (see text for details). Linkage groups are named after the groups in the “framework“ map. Some of the framework groups (a and b; g and h) are connected by accessory markers in the inclusive map. Two extra groups (n and o) appear here relative to the framework map (PDF 101 kb)


  1. 1.
    Acheré V, Faivre-Rampant P, Jeandroz S, Besnard G, Markussen T, Aragones A, Fladung M, Ritter E, Favre J-M (2004) A full saturated linkage map of Picea abies including AFLP, SSR, ESTP, 5S rDNA and morphological markers. Theor Appl Genet 108:1602–1613PubMedCrossRefGoogle Scholar
  2. 2.
    Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci U S A 90:7980–7984PubMedCrossRefGoogle Scholar
  3. 3.
    Akhunov ED, Goodyear AW, Geng S, Qi L-L, Echalier B, Gill BS, Miftahudin A, Gustafson JP, Lazo G, Chao S, Anderson OD, Linkiewicz AM, Dubcovsky J, La Rota M, Sorrells ME, Zhang D, Nguyen HT, Kalavacharla V, Hossain K, Kianian SF, Peng J, Lapitan NLV, Gonzalez-Hernandez JL, Anderson JA, Choi D-W, Close TJ, Dilbirligi M, Gill KS, Walker-Simmons MK, Steber C, McGuire PE, Qualset CO, Dvorak J (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:1–11CrossRefPubMedGoogle Scholar
  4. 4.
    Bennetzen JL, Schrick K, Springer PS, Brown WE, SanMiguel P (1994) Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 37:565–576PubMedGoogle Scholar
  5. 5.
    Binelli G, Bucci G (1994) A genetic linkage map of Picea abies Karst., based on RAPD markers, as a tool in population genetics. Theor Appl Genet 88:283–288CrossRefGoogle Scholar
  6. 6.
    Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103PubMedGoogle Scholar
  7. 7.
    Brown GR, Kadel EK III, Bassoni DL, Kiehne KL, Temesgen B, van Buijtenen JP, Sewell MM, Marshall KA, Neale DB (2001) Anchored reference loci in Loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics 159:799–809PubMedGoogle Scholar
  8. 8.
    Castiglioni P, Ajmone-Marsan P, van Wijk R, Motto M (1999) AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theor Appl Genet 99:425–431CrossRefGoogle Scholar
  9. 9.
    Chagné D, Brown G, Lalanne C, Madur D, Pot D, Neale D, Plomion C (2003) Comparative genome and QTL mapping between maritime and loblolly pines. Mol Breed 12:185–195CrossRefGoogle Scholar
  10. 10.
    Chagné D, Lalanne C, Madur D, Kumar S, Frigério J-M, Krier C, Decroocq S, Savouré A, Bou Dagher-Kharrat M, Bertocchi E, Brach J, Plomion C (2002) A high density genetic map of maritime pine based on AFLPs. Ann For Sci 59:627–636CrossRefGoogle Scholar
  11. 11.
    Cliff AD, Ord JK (1973) Spatial autocorrelation. Pion, LondonGoogle Scholar
  12. 12.
    Costa P, Pot D, Dubos C, Frigerio J-M, Pionneau C, Bodenes C, Bertocchi E, Cervera M-T, Remington DL, Plomion C (2000) A genetic map of Maritime pine based on AFLP, RAPD and protein markers. Theor Appl Genet 100:39–48CrossRefGoogle Scholar
  13. 13.
    Devey ME, Fiddler TA, Liu B-H, Knapp SJ, Neale DB (1994) Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Theor Appl Genet 88:273–278CrossRefGoogle Scholar
  14. 14.
    Devey ME, Sewell MM, Uren TL, Neale DB (1999) Comparative mapping in loblolly and radiata pine using RFLP and microsatellite markers. Theor Appl Genet 99:656–662CrossRefGoogle Scholar
  15. 15.
    Echt CS, Nelson CD (1997) Linkage mapping and genome length in eastern white pine (Pinus strobus L.). Theor Appl Genet 94:1031–1037CrossRefGoogle Scholar
  16. 16.
    Elsik CG, Williams CG (2001) Families of clustered microsatellites in a conifer genome. Mol Genet Genomics 265:535–542CrossRefPubMedGoogle Scholar
  17. 17.
    Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterisation of grass genome structure and evolution. Ann Bot 89:3–10CrossRefPubMedGoogle Scholar
  18. 18.
    Fu H, Park W, Yan X, Zheng Z, Shen B, Dooner HK (2001) The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome. Proc Natl Acad Sci U S A 98:8903–8908CrossRefPubMedGoogle Scholar
  19. 19.
    Gerber S, Rodolphe F (1994) An estimation of the genome length of maritime pine (Pinus pinaster Ait.). Theor Appl Genet 88:289–292Google Scholar
  20. 20.
    Gosselin I, Zhou Y, Bousquet J, Isabel N (2002) Megagametophyte-derived linkage maps of white spruce (Picea glauca) based on RAPD, SCAR, and ESTP markers. Theor Appl Genet 104:987–997CrossRefPubMedGoogle Scholar
  21. 21.
    Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  22. 22.
    Grivet L, D'Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000PubMedGoogle Scholar
  23. 23.
    Hizume M, Shibata F, Matsumoto A, Maruyama Y, Hayashi E, Kondo T, Kondo K, Zhang S, Hong D (2002) Tandem repeat DNA localising on the proximal DAPI bands of chromosomes in Larix, pinaceae. Genome 45:777–783PubMedCrossRefGoogle Scholar
  24. 24.
    Hulbert SH, Ilott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW (1988) Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics 120:947–958PubMedGoogle Scholar
  25. 25.
    Jermstad KD, Bassoni DL, Wheeler NC, Neale DB (1998) A sex-averaged genetic linkage map in coastal Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var ‘menziesii’) based on RFLP and RAPD markers. Theor Appl Genet 97:762–770CrossRefGoogle Scholar
  26. 26.
    Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711CrossRefGoogle Scholar
  27. 27.
    Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247PubMedGoogle Scholar
  28. 28.
    Kumar S, Spelman RJ, Garrick DJ, Richardson TE, Lausberg M, Wilcox PL (2000) Multiple-marker mapping of wood density loci in an outbred pedigree of radiata pine. Theor Appl Genet 100:926–933CrossRefGoogle Scholar
  29. 29.
    Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRefPubMedGoogle Scholar
  30. 30.
    Liu BH (1998) Statistical genomics. CRC Press, Boca RatonGoogle Scholar
  31. 31.
    Messing J, Bharti AK, Karlowski WM, Gundlach H, Kim HR, Yu Y, Wei F, Fuks G, Soderlund CA, Mayer KFX, Wing RA (2004) Sequence composition and genome organization of maize. Proc Natl Acad Sci U S A 101:14349–14354CrossRefPubMedGoogle Scholar
  32. 32.
    Moore G, Devos KM, Wang Z, Gale MD (1995) Grasses, line up and form a circle. Curr Biol 5:737–739CrossRefPubMedGoogle Scholar
  33. 33.
    Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200CrossRefPubMedGoogle Scholar
  34. 34.
    Morgante M, Rafalski A (2004) Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet 20:103–111CrossRefPubMedGoogle Scholar
  35. 35.
    Naveh-Many T, Cedar H (1981) Active gene sequences are undermethylated. Proc Natl Acad Sci U S A 78:4246–4250PubMedCrossRefGoogle Scholar
  36. 36.
    Paglia GP, Morgante M (1998) PCR-based multiplex DNA fingerprinting techniques for the analysis of conifer genomes. Mol Breed 4:173–177CrossRefGoogle Scholar
  37. 37.
    Paglia GP, Olivieri AM, Morgante M (1998) Towards second-generation STS (sequence-tagged sites) linkage maps in conifers: a genetic map of Norway spruce (Picea abies K.). Mol Gen Genet 258:466–478CrossRefPubMedGoogle Scholar
  38. 38.
    Perry DJ, Bousquet J (1998) Sequence-Tagged-Site (STS) markers of arbitrary genes: development, characterization and analysis of linkage in black spruce. Genetics 149:1089–1098PubMedGoogle Scholar
  39. 39.
    Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, Nagel A, Jiang N, Tibbitts DC, Wessler SR, Paterson AH (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12:795–807CrossRefPubMedGoogle Scholar
  40. 40.
    Pfeiffer A, Olivieri AM, Morgante M (1997) Identification and characterisation of microsatellites in Norway spruce (Picea abies K.). Genome 40:411–419PubMedCrossRefGoogle Scholar
  41. 41.
    Plomion C, Hurme P, Frigerio J-M, Ridolfi M, Pot D, Pionneau C, Avila C, Gallardo F, David H, Neutelings G, Campbell M, Canovas FM, Savolainen O, Bodénès C, Kremer A (1999) Developing SSCP markers in two Pines species. Mol Breed 5:21–31CrossRefGoogle Scholar
  42. 42.
    Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238CrossRefGoogle Scholar
  43. 43.
    Remington DL, Whetten RW, Liu B-H, O'Malley DM (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet 98:1279–1292CrossRefPubMedGoogle Scholar
  44. 44.
    Schubert R, Mueller-Starck G, Riegel R (2001) Development of EST-PCR markers and monitoring their intrapopulational genetic variation in Picea abies (L.) Karst. Theor Appl Genet 103:1223–1231CrossRefGoogle Scholar
  45. 45.
    Scotti I, Paglia GP, Magni F, Morgante M (2002a) Efficient development of dinucleotide microsatellite markers in Norway spruce (Picea abies Karst.) through dot-blot selection. Theor Appl Genet 104:1035–1041CrossRefPubMedGoogle Scholar
  46. 46.
    Scotti I, Magni F, Paglia GP, Morgante M (2002b) Trinucleotide microsatellites in Norway spruce (Picea abies): their features and the development of molecular markers. Theor Appl Genet 106:40–50PubMedGoogle Scholar
  47. 47.
    Scotti I, Mariani A, Verona V, Candolini A, Cenci CA, Olivieri AM (2002c) AFLP markers and cytotaxonomic analysis reveal hybridisation in the genus Schœnus (Cyperaceae). Genome 45:222–228PubMedCrossRefGoogle Scholar
  48. 48.
    Scotti-Saintagne C, Mariette S, Porth I, Goicoechea PG, Barreneche T, Bodenes C, Burg K, Kremer A (2004) Genome scanning for interspecific differentiation between two closely related oak species (Quercus robur L. and Q. petraea (Matt.) Liebl.). Genetics 168:1615–1626CrossRefPubMedGoogle Scholar
  49. 49.
    Sewell MM, Sherman BK, Neale DB (1999) A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151:321–330PubMedGoogle Scholar
  50. 50.
    Sokal R, Oden NL (1978) Spatial autocorrelation methods in biology. 1. Methodology. Biol J Linn Soc 10:199–228CrossRefGoogle Scholar
  51. 51.
    Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J 3:744–793CrossRefGoogle Scholar
  52. 52.
    Temesgen B, Brown GR, Harry DE, Kinlaw CS, Sewell MM, Neale DB (2001) Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.). Theor Appl Genet 102:664–675CrossRefGoogle Scholar
  53. 53.
    The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  54. 54.
    Tulseriam LK, Glaubitz JC, Kiss G, Carlson J (1992) Single tree genetic linkage mapping using haploid DNA from megagametophytes. Bio/technology 10:686–690CrossRefPubMedGoogle Scholar
  55. 55.
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res 21:4407–4414CrossRefGoogle Scholar
  56. 56.
    Waugh R, McLean K, Flavell AJ, Pearce SR, Thomas BBT, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Ivan Scotti
    • 1
    • 2
  • Andrea Burelli
    • 1
  • Federica Cattonaro
    • 1
  • David Chagné
    • 3
  • John Fuller
    • 4
  • Peter E. Hedley
    • 4
  • Gunnar Jansson
    • 5
  • Celine Lalanne
    • 3
  • Delphine Madur
    • 3
  • David Neale
    • 6
  • Christophe Plomion
    • 3
  • Wayne Powell
    • 4
  • Michela Troggio
    • 6
  • Michele Morgante
    • 1
  1. 1.Dipartimento di Scienze Agrarie ed AmbientaliUniversità di UdineUdineItaly
  2. 2.INRA-UMR ECOFOGKourou CedexFrench Guyana
  3. 3.INRA-UMR BIOGECOCestasFrance
  4. 4.Scottish Crop Research InstituteDundeeUK
  5. 5.SkogforskUppsalaSweden
  6. 6.Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest Service, Department of Environmental HorticultureUniversity of CaliforniaDavisUSA

Personalised recommendations