Tree Genetics & Genomes

, Volume 1, Issue 2, pp 50–63

Species-diagnostic markers in Larix spp. based on RAPDs and nuclear, cpDNA, and mtDNA gene sequences, and their phylogenetic implications

  • Marie-Claude Gros-Louis
  • Jean Bousquet
  • Luc E. Pâques
  • Nathalie Isabel
Original Paper

Abstract

Genetic markers from the nuclear, chloroplast, and mitochondrial genomes were developed to distinguish unambiguously among four larch species [Larix laricina (Du Roi) K. Koch, Larix decidua (Mill.), Larix kaempferi (Lamb.) Sarg., and Larix sibirica (Ledeb.)] used in intensive forestry in eastern North America. Nine random amplified polymorphic DNA (RAPD) fragments had good diagnostic value, and 3 out of 12 nuclear genes were found to harbor fixed interspecific polymorphisms implicating a total of 17 single nucleotide polymorphisms (SNPs) and 2 indels. The sequencing of five mtDNA introns (cox1-intron1, matR-intron1, nad1-intron b/c, nad3-intron1, and nad5-intron1) and four cpDNA regions (matK, trnL-intron, trnTtrnL and trnL–trnF intergenic spacers) resulted in the identification of 14 sites with fixed interspecific differences among the four species. Including the ten Larix species, one polymorphic site per 47 nucleotide sites sampled was observed for nuclear genes, one per 283 sites for cpDNA, and one per 374 sites for mtDNA. The phylogeny of the genus could be estimated from variation among the ten species detected in two cpDNA intergenic regions and four mtDNA introns. There was congruence between cpDNA and mtDNA phylogenies with three large groups delineated: the North American, North Eurasian, and South Asian taxa. The position of L. sibirica differed between organelle genomes. It was regrouped with South Asian species on the cpDNA tree, but with its North Eurasian congenerics on the mtDNA tree. To simplify the detection of diagnostic DNA sequence polymorphisms among the four main Larix species, cleaved amplified polymorphic sequence (CAPS) assays were developed from the polymorphisms identified in the various genomes. Seventeen primer–enzyme combinations were tested, and six were selected for their high level of informativeness. These new species-specific diagnostic markers should be useful for the certification of larch breeding materials and hybrid stocks used in intensive forestry in the northern hemisphere.

Keywords

ESTP Hybrids Larix Genetic identity Genetic fingerprint cpDNA mtDNA Phylogeny RAPD 

References

  1. Abaimov AP, Barzut VM, Berkutenko AN, Buitink J, Martinsson O, Milyutin LI, Polezhaev A, Putenikhin VP, Takata K (2002a) Seed collection and seed quality of Larix spp. Eur J For Res 4:39–49Google Scholar
  2. Abaimov AP, Barzut VM, Berkutenko AN, Buitink J, Martinsson O, Milyutin LI, Putenikhin VP, Takata K (2002b) The Russian–Scandinavian larch project—seed collection and seed quality. In: Pâques LE (ed) Improvement of larch (Larix sp.) for better growth, stem form and wood quality, INRA. Gap (Hautes-Alpes), Auvergne-Limousin, France, pp 47–53Google Scholar
  3. Acheré V, Faivre Rampant P, Pâques LE, Prat D (2004) Chloroplast and mitochondrial molecular tests identify European×Japanese larch hybrids. Theor Appl Genet 108:1643–1649CrossRefPubMedGoogle Scholar
  4. Arcade A, Anselin F, Faivre Rampant P, Lesage MC, Pâques LE, Prat D (2000) Application of AFLP, RAPD and ISSR markers to genetic mapping of European and Japanese larch. Theor Appl Genet 100:299–307CrossRefGoogle Scholar
  5. Baltunis BS, Greenwood MS, Eysteinsson T (1998) Hybrid vigor in Larix: growth of intra- and interspecific hybrids of Larix decidua, L. laricina, and L. kaempferi after 5-years. Silvae Genet 47:288–293Google Scholar
  6. Bouillé M, Bousquet J (2005) Trans-species shared polymorphisms at orthologous nuclear gene loci among distant species in the conifer Picea (Pinaceae): implications for the long-term maintenance of genetic diversity in trees. Am J Bot 92:63–73Google Scholar
  7. Boyle TJB, Nieman TC, Magnussen S, Veen J (1989) Species, provenance, and progeny tests of the genus Larix. Forestry Canada, Petawawa National Forestry Institute, Ontario, Canada, Information Report PI-X-94Google Scholar
  8. Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131PubMedGoogle Scholar
  9. Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256CrossRefGoogle Scholar
  10. Dumoulin F (1999) Le reboisement, un outil pour augmenter la productivité. In: Ressources Naturelles Canada, Service canadien des forêts (eds) L'amélioration génétique en foresterie: où en sommes-nous? Actes du colloque sur l'amélioration génétique au Québec, Rivière-du-Loup, Québec, Canada, pp 25–30 (in French)Google Scholar
  11. Faith DP (1991) Cladistic permutation tests for monophyly and nonmonophyly. Syst Zool 40:366–375CrossRefGoogle Scholar
  12. Farris JS, Källersjö M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  13. Fossati T, Grasi F, Sala F, Castiglione S (2003) Molecular analysis of natural populations of Populus nigra L. intermingled with cultivated hybrids. Mol Ecol 12:2033–2043CrossRefPubMedGoogle Scholar
  14. Fowler DP, Park YS, Loo-Dinkins J (1995) Larix laricina—silvics and genetics. In: Schmidt WC, McDonald KJ (eds) Ecology and management of Larix forests: a look ahead. Proceedings of an international symposium, Whitefish, Montana, Oct 1992. US Dept. of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT, pp 54–57Google Scholar
  15. Gernandt DS, Liston A (1999) Internal transcribed spacer region evolution in Larix and Pseudotsuga (Pinaceae). Am J Bot 86:711–723PubMedCrossRefGoogle Scholar
  16. Gilmore DW, David AJ (2002) Current trends in management practices for European larch in North America. For Chron 78:822–829Google Scholar
  17. Gosselin I, Zhou Y, Bousquet J, Isabel N (2002) Megagametophyte-derived linkage maps of white spruce (Picea glauca) based on RAPD, SCAR and ESTP markers. Theor Appl Genet 104:987–997CrossRefPubMedGoogle Scholar
  18. Isabel N, Beaulieu J, Bousquet J (1995) Complete congruence between gene diversity estimates derived from genotypic data at enzyme and RAPD loci in black spruce. Proc Natl Acad Sci U S A 92:6369–6373PubMedCrossRefGoogle Scholar
  19. Isabel N, Beaulieu J, Theriault P, Bousquet J (1999) Direct evidence for biased gene diversity estimates from dominant RAPD fingerprints. Mol Ecol 8:477–483CrossRefGoogle Scholar
  20. Jaquish B, Howe G, Fins L, Rust M (1995) Western larch tree improvement programs in the Inland Empire and British Columbia. In: Schmidt WC, McDonald KJ (eds) Ecology and management of Larix forests: a look ahead. Proceedings of an international symposium, Whitefish, Montana, Oct 1992. US Dept. of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT pp 452–460Google Scholar
  21. Jaramillo-Correa JP, Bousquet J, Beaulieu J, Isabel N, Perron M, Bouillé M (2003) Cross-species amplification of mitochondrial DNA sequence-tagged-site markers in conifers: the nature of polymorphism and variation within and among species in Picea. Theor Appl Genet 106:1353–1367PubMedGoogle Scholar
  22. Jeandroz S, Frascaria-Lacoste N, Bousquet J (1996) Molecular recognition of the closely related Fraxinus excelsior and F. oxyphylla (Oleaceae) by RAPD markers. For Genet 3:237–242Google Scholar
  23. Khasa PD, Newton CH, Rahman MH, Jaquish B, Dancik BP (2000) Isolation, characterization, and inheritance of microsatellite loci in alpine larch and western larch. Genome 43:439–448CrossRefPubMedGoogle Scholar
  24. Kisanuki H, Kurahashi A, Kato H, Terauchi R, Kawano S, Ide Y, Watanabe S (1995) Interspecific relationship of the genus Larix inferred from the RFLPs of chloroplast DNA. J Jpn For Soc 77:83–85Google Scholar
  25. Kisanuki H, Ide Y, Isoda K, Shiraishi S (2002) Molecular analysis of taxa in the genus Larix using random amplified polymorphic DNA. In: Pâques LE (ed) Improvement of larch (Larix sp.) for better growth, stem form and wood quality, INRA. Gap (Hautes-Alpes), Auvergne-Limousin, France, pp 475–484Google Scholar
  26. Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using codominant ecotype-specific PCR-based markers. Plant J 4:403–410CrossRefPubMedGoogle Scholar
  27. Laroche J, Bousquet J (1999) Evolution of the mitochondrial rps3 intron in perennial and annual angiosperms and homology to nad5 intron 1. Mol Biol Evol 16:441–452PubMedGoogle Scholar
  28. Laroche J, Li P, Maggia L, Bousquet J (1997) Molecular evolution of angiosperm mitochondrial introns and exons. Proc Natl Acad Sci U S A 94:5722–5727CrossRefPubMedGoogle Scholar
  29. LePage BA, Basinger JF (1991) A new species of Larix (Pinaceae) from the early Tertiary of Axel Island, Arctic Canada. Rev Palaeobot Palynol 70:89–111CrossRefGoogle Scholar
  30. LePage BA, Basinger JF (1995) The evolutionary history of the genus Larix (Pinaceae). In: Schmidt WC, McDonald KJ (eds) Ecology and management of Larix forests: a look ahead. Proceedings of an international symposium, Whitefish, Montana, Oct 1992. US Dept. of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT, pp 19–30Google Scholar
  31. Lewandowski A (1997) Genetic relationships between European and Siberian larch, Larix spp. (Pinaceae), studied by allozymes. Is the Polish larch a hybrid between these two species? Plant Syst Evol 204:65–73CrossRefGoogle Scholar
  32. Li BL, Wyckoff GW (1994) Breeding strategies for Larix decidua, L. leptolepis and their hybrids in the United States. For Genet 1:65–72Google Scholar
  33. Lu M-Z, Szmidt AE, Wang X-R (1998) RNA editing in gymnosperms and its impact on the evolution of the mitochondrial cox1 gene. Plant Mol Biol 37:225–234CrossRefPubMedGoogle Scholar
  34. Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Am J Bot 83:383–404CrossRefGoogle Scholar
  35. O'Reilly C, Harper CP, McCarthy N, Keane M (2001) Seasonal changes in physiological status, cold storage tolerance and field performance of hybrid larch seedlings in Ireland. Forestry 74:407–421CrossRefGoogle Scholar
  36. Ostenfeld CH, Syrach-Larsen CS (1930) The species of the genus Larix and their geographical distribution. Biologiske Meddelelser. Kongelige Denask Videnskabernes Selskabs 9(2):1–107Google Scholar
  37. Pâques LE (1989) A critical review of larch hybridization and its incidence on breeding strategies. Ann Sci For 46:141–153CrossRefGoogle Scholar
  38. Pâques LE (1992) Performance of vegetatively propagated Larix decidua, L. kaempferi, and L. laricina hybrids. Ann Sci For 49:63–74CrossRefGoogle Scholar
  39. Pâques LE (2002a) Heterosis in interspecific hybrids between European and Japanese larch. In: Pâques LE (ed) Improvement of larch (Larix sp.) for better growth, stem form and wood quality, INRA. Gap (Hautes-Alpes), Auvergne-Limousin, France, pp 155–163Google Scholar
  40. Pâques LE (2002b) Larch tree improvement programs in France. In: Pâques LE (ed) Improvement of larch (Larix sp.) for better growth, stem form and wood quality, INRA. Gap (Hautes-Alpes), Auvergne-Limousin, France, pp 104–118Google Scholar
  41. Parducci L, Szmidt AE (1999) PCR-RFLP analysis of cpDNA in the genus Abies. Theor Appl Genet 98:802–808CrossRefGoogle Scholar
  42. Perron M, Bousquet J (1997) Natural hybridization between black spruce and red spruce. Mol Ecol 6:725–734CrossRefGoogle Scholar
  43. Perron M, Gordon AG, Bousquet J (1995) Species-specific RAPD fingerprints for the closely related Picea mariana and P. rubens. Theor Appl Genet 91:142–149CrossRefGoogle Scholar
  44. Perry DJ, Bousquet J (1998a) Sequence-tagged-site (STS) markers of arbitrary genes: development, characterization and analysis of linkage in black spruce. Genetics 149:1089–1098PubMedGoogle Scholar
  45. Perry DJ, Bousquet J (1998b) Sequence-tagged-site (STS) markers of arbitrary genes: the utility of black spruce-derived STS primers in other conifers. Theor Appl Genet 97:735–743CrossRefGoogle Scholar
  46. Qian T, Ennos RA, Helgason T (1995) Genetic relationships among larch species based on analysis of restriction fragment variation for chloroplast DNA. Can J For Res 25:1197–1202Google Scholar
  47. Qiu YL, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407CrossRefPubMedGoogle Scholar
  48. Rondeux J, Pauwels D (2000) Volume tables for small trees of larch (Larix sp.) in the southern part of Belgium. Forestry 73:91–93CrossRefGoogle Scholar
  49. Scheepers D, Eloy MC, Briquet M (2000) Identification of larch species (Larix decidua, L. kaempferi and Larix X eurolepis) and estimation of hybrid fraction in seed lots by RAPD fingerprints. Theor Appl Genet 100:71–74CrossRefGoogle Scholar
  50. Semerikov VL, Lascoux M (1999) Genetic relationship among Eurasian and American Larix species based on allozymes. Heredity 83:62–70CrossRefPubMedGoogle Scholar
  51. Semerikov VL, Lascoux M (2003) Nuclear and cytoplasmic variation within and between Eurasian Larix (Pinaceae) species. Am J Bot 90:1113–1123Google Scholar
  52. Semerikov VL, Semerikov LF, Lascoux M (1999) Intra- and interspecific allozyme variability in Eurasian Larix Mill. species. Heredity 82:193–204CrossRefGoogle Scholar
  53. Semerikov VL, Zhang H, Sun M, Lascoux M (2003) Conflicting phylogenies of Larix (Pinaceae) based on cytoplasmic and nuclear DNA. Mol Phylogenet Evol 27:173–184CrossRefPubMedGoogle Scholar
  54. Soltis DE, Soltis PS, Ranker TA, Ness BD (1989) Chloroplast DNA variation in a wild plant, Tolmiea menziesii. Genetics 121:819–826PubMedGoogle Scholar
  55. Soranzo N, Provan J, Powell W (1999) An example of microsatellite length variation in the mitochondrial genome of conifers. Genome 42:158–161CrossRefPubMedGoogle Scholar
  56. Stipanicic A (1999) Les programmes d'amélioration génétique: bilan des réalisations, les mélèzes laricin et hybrides. In: Ressources Naturelles Canada, Service canadien des forêts (eds) L'amélioration génétique en foresterie: où en sommes-nous? Actes du colloque sur l'amélioration génétique au Québec, Rivière-du-Loup Québec Canada, pp 77–85 (in French)Google Scholar
  57. Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods), 4.0 edn. Sinauer, Sunderland, MAGoogle Scholar
  58. Szmidt AE, Alden T, Hallgren J-E (1987) Paternal inheritance of chloroplast DNA in Larix. Plant Mol Biol 9:59–64CrossRefGoogle Scholar
  59. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three noncoding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109CrossRefPubMedGoogle Scholar
  60. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  61. Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994a) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci U S A 91:9794–9798PubMedCrossRefGoogle Scholar
  62. Wakasugi T, Tsudzuki J, Ito S, Shibata M, Sugiura M (1994b) A physical map and clone bank of the black pine (Pinus thunbergii) chloroplast genome. Plant Mol Biol Report 12:227–241CrossRefGoogle Scholar
  63. Wang X-R, Tsumura Y, Yoshimaru H, Nagasaka K, Szmidt AE (1999) Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, matK, rpl20rps18 spacer, and trnV intron sequences. Am J Bot 86:1742–1753PubMedCrossRefGoogle Scholar
  64. Wei X-X, Wang X-Q (2003) Phylogenetic split of Larix: evidence from paternally inherited cpDNA trnTtrnF region. Plant Syst Evol 239:67–77CrossRefGoogle Scholar
  65. Wei X-X, Wang X-Q (2004a) Evolution of 4-coumarate: coenzyme A ligase (4CL) gene and divergence of Larix (Pinaceae). Mol Phylogenet Evol 31:542–553CrossRefPubMedGoogle Scholar
  66. Wei X-X, Wang X-Q (2004b) Recolonization and radiation in Larix (Pinaceae): evidence from nuclear ribosomal DNA paralogues. Mol Ecol 13:3115–3124CrossRefPubMedGoogle Scholar
  67. Whittle C-A, Johnson MO (2002) Male-driven evolution of mitochondrial and chloroplastidial DNA sequences in plants. Mol Biol Evol 19:938–949PubMedGoogle Scholar
  68. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedCrossRefGoogle Scholar
  69. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNAs. Proc Natl Acad Sci U S A 84:9054–9058PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Marie-Claude Gros-Louis
    • 1
    • 2
  • Jean Bousquet
    • 1
  • Luc E. Pâques
    • 3
  • Nathalie Isabel
    • 1
    • 2
  1. 1.Chaire de recherche du Canada en génomique forestière et environnementale and Centre de recherche en biologie forestière, Pavillon Charles-Eugène-MarchandUniversité LavalSte-Foy, QuébecCanada
  2. 2.Ressources naturelles Canada, Service canadien des forêtsCentre de foresterie des LaurentidesSte-Foy, QuébecCanada
  3. 3.INRAStation d'Amélioration des Arbres Forestiers, rue de la Pomme de PinOlivetFrance

Personalised recommendations