Climate warming shortens flowering duration: a comprehensive assessment of plant phenological responses based on gene expression analyses and mathematical modeling

Abstract

There is an increasing potential to incorporate recent advances in our understanding of molecular-genetic pathways of flowering-time regulation to forecast shifts in flowering phenology in response to rising temperature. Recent studies developed models that integrate temperature and photoperiod signals into the network of floral regulatory genes, and predicted the shortening of flowering duration under warming based on the expression dynamics of major flowering-time genes in the perennial herb Arabidopsis halleri subsp. gemmifera. Nevertheless, empirical testing of the model prediction is still lacking. We performed temperature manipulation experiments and common garden experiments to test the model predictions using plants from two distant populations of A. halleri. We also quantified expression levels of two major flowering-time genes and compared the observed and predicted gene expression patterns. Our experiments in the laboratory and the field demonstrated that flowering duration of A. halleri was significantly shortened under warming conditions. Our results also revealed that the end of flowering was more sensitive to the climate warming than the onset of flowering in A. halleri. The observed gene expression dynamics in the warming condition were predicted well by the gene regulatory model. The transplant experiment of plants from Hokkaido, the northernmost island, to the subtropical field site in Okinawa, Japan, showed that plants flowered without significant activation of FLOWERING LOCUS T, a floral integrator crucial for the accelerated flowering in long days. The study suggested that the redundancy of flowering gene regulatory network could be beneficial to the persistence of flowering ability under extreme climatic conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aikawa S, Kobayashi MJ, Satake A, Shimizu KK, Kudoh H (2010) Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. Proc Natl Acad Sci USA 107:11632–11637. https://doi.org/10.1073/pnas.0914293107

    Article  PubMed  Google Scholar 

  2. Al-Shehbaz IA, O’Kane SL Jr (2002) Taxonomy and phylogeny of Arabidopsis (Brassicaceae). In: Somerville CR, Meyerowitz EM (eds) The arabidopsis book. American Society of Plant Biologists, Rockville, MD. https://doi.org/10.1199/tab.0001

    Google Scholar 

  3. Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013. https://doi.org/10.1111/j.1365-313X.2010.04148.x

    Article  PubMed  CAS  Google Scholar 

  4. Anderson JT, Inouye DW, McKinney AM, Colautti RI, Mitchell-Olds T (2012) Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc R Soc Lond Ser B Biol Sci. https://doi.org/10.1098/rspb.2012.1051

    Article  Google Scholar 

  5. Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639. https://doi.org/10.1038/nrg3291

    Article  PubMed  CAS  Google Scholar 

  6. Bartomeus I, Ascher JS, Wagner D, Danforth BN, Colla S, Kornbluth S, Winfree R (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc Natl Acad Sci USA 108:20645–20649. https://doi.org/10.1073/pnas.1115559108

    Article  PubMed  Google Scholar 

  7. Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664. https://doi.org/10.1016/j.cell.2006.05.005

    Article  PubMed  CAS  Google Scholar 

  8. Blackman BK (2017) Changing responses to changing seasons: natural variation in the plasticity of flowering time. Plant Physiol 173:16–26. https://doi.org/10.1104/pp.16.01683

    Article  PubMed  CAS  Google Scholar 

  9. Both C, Van Asch M, Bijlsma RG, Van Den Burg AB, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol 78:73–83. https://doi.org/10.1111/j.1365-2656.2008.01458.x

    Article  PubMed  Google Scholar 

  10. Burghardt LT, Runcie DE, Wilczek AM, Cooper MD, Roe JL, Welch SM, Schmitt J (2015) Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in Arabidopsis thaliana. New Phytol 210:564–576. https://doi.org/10.1111/nph.13799

    Article  PubMed  CAS  Google Scholar 

  11. Cao Y, Xiao Y, Huang H, Xu J, Hu W, Wang N (2016) Simulated warming shifts the flowering phenology and sexual reproduction of Cardamine hirsuta under different planting densities. Sci Rep-UK 6:27835. https://doi.org/10.1038/srep27835

    Article  CAS  Google Scholar 

  12. Clauss MJ, Koch MA (2006) Poorly known relatives of Arabidopsis thaliana. Trends Plant Sci 11:449–459. https://doi.org/10.1016/j.tplants.2006.07.005

    Article  PubMed  CAS  Google Scholar 

  13. Cleland EE, Allen JM, Crimmins TM, Dunne JA, Pau S, Travers SE, Zavaleta ES, Wolkovich EM (2012) Phenological tracking enables positive species responses to climate change. Ecol 93:1765–1771. https://doi.org/10.1890/11-1912.1

    Article  Google Scholar 

  14. Cortés-Flores J, Hernández-Esquivel KB, González-Rodríguez A, Ibarra-Manríquez G (2017) Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: influence of phylogeny and abiotic factors. Am J Bot 104:39–49. https://doi.org/10.3732/ajb.1600305

    Article  PubMed  Google Scholar 

  15. Crick HQ, Dudley C, Glue DE, Thomson DL (1997) UK birds are laying eggs earlier. Nature 388:526–526. https://doi.org/10.1038/41453

    Article  CAS  Google Scholar 

  16. Davies TJ, Wolkovich EM, Kraft NJ, Salamin N, Allen JM, Ault TR, Betancourt JL, Bolmgren K, Cleland EE, Cook BI, Crimmins TM, Mazer SJ, McCabe GJ, Pau S, Regetz J, Schwartz MD, Travers SE (2013) Phylogenetic conservatism in plant phenology. J Ecol 101:1520–1530. https://doi.org/10.1111/1365-2745.12154

    Article  Google Scholar 

  17. Dean C, Whittaker C (2017) The FLC locus: a platform for discoveries in epigenetics and adaptation. Annu Rev Cell Dev Bi 33:555–575. https://doi.org/10.1146/annurev-cellbio-100616-060546

    Article  CAS  Google Scholar 

  18. Doiron M, Gauthier G, Lévesque E (2014) Effects of experimental warming on nitrogen concentration and biomass of forage plants for an arctic herbivore. J Ecol 102:508–517. https://doi.org/10.1111/1365-2745.12213

    Article  Google Scholar 

  19. Du Y, Mao L, Queenborough SA, Freckleton RP, Chen B, Ma K (2015) Phylogenetic constraints and trait correlates of flowering phenology in the angiosperm flora of China. Global Ecol Biogeogr 24:928–938. https://doi.org/10.1111/geb.12303

    Article  Google Scholar 

  20. Forrest JR (2015) Plant-pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations? Oikos 124:4–13. https://doi.org/10.1111/oik.01386

    Article  Google Scholar 

  21. Fournier-Level A, Perry EO, Wang JA, Braun PT, Migneault A, Cooper MD, Metcalf CJE, Schmitt J (2016) Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana. Proc Natl Acad Sci USA 113:E2812–E2821. https://doi.org/10.1073/pnas.1517456113

    Article  PubMed  CAS  Google Scholar 

  22. Gentry AH (1974) Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 6:64–68. https://doi.org/10.2307/2989698

    Article  Google Scholar 

  23. Gordo O, Sanz JJ (2005) Phenology and climate change: a long-term study in a Mediterranean locality. Oecologia 146:484–495. https://doi.org/10.1007/s00442-005-0240-z

    Article  PubMed  Google Scholar 

  24. Gordo O, Sanz JJ (2006) Temporal trends in phenology of the honey bee Apis mellifera (L.) and the small white Pieris rapae (L.) in the Iberian Peninsula (1952–2004). Ecol Entomol 31:261–268. https://doi.org/10.1111/j.1365-2311.2006.00787.x

    Article  Google Scholar 

  25. Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009) How does climate warming affect plant-pollinator interactions? Ecol Lett 12:184–195. https://doi.org/10.1111/j.1461-0248.2008.01269.x

    Article  PubMed  Google Scholar 

  26. Hepworth J, Antoniou-Kourounioti RL, Bloomer RH, Selga C, Berggren K, Cox D, Collier Harris BR, Irwin JA, Holm S, Säll T, Howard M, Dean C (2018) Absence of warmth permits epigenetic memory of winter in Arabidopsis. Nat Commun 9:639. https://doi.org/10.1038/s41467-018-03065-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Høye TT, Post E, Schmidt NM, Trøjelsgaard K, Forchhammer MC (2013) Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nat Clim Change 3:759–763. https://doi.org/10.1038/nclimate1909

    Article  Google Scholar 

  28. Hyun Y, Richter R, Vincent C, Martinez-Gallegos R, Porri A, Coupland G (2016) Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem. Dev Cell 37:254–266. https://doi.org/10.1016/j.devcel.2016.04.001

    Article  PubMed  CAS  Google Scholar 

  29. Hyun Y, Richter R, Coupland G (2017) Competence to flower: age-controlled sensitivity to environmental cues. Plant Physiol 173:36–46. https://doi.org/10.1104/pp.16.01523

    Article  PubMed  CAS  Google Scholar 

  30. Japan Meteorological Agency website http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_s1.php?prec_no=23&block_no=47430&year=2014&month=&day=&view=a2. Accessed 1 Dec 2017

  31. Jongejans E, Jorritsma-Wienk LD, Becker U, Dostal P, Milden M, De Kroon H (2010) Region versus site variation in the population dynamics of three short-lived perennials. J Ecol 98:279–289. https://doi.org/10.1111/j.1365-2745.2009.01612.x

    Article  Google Scholar 

  32. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965. https://doi.org/10.1126/science.286.5446.1962

    Article  PubMed  CAS  Google Scholar 

  33. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962. https://doi.org/10.1126/science.286.5446.1960

    Article  PubMed  CAS  Google Scholar 

  34. Kobayashi MJ, Takeuchi Y, Kenta T, Kume T, Diway B, Shimizu KK (2013) Mass flowering of the tropical tree Shorea beccariana was preceded by expression changes in flowering and drought-responsive genes. Mol Ecol 22:4767–4782. https://doi.org/10.1111/mec.12344

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kudo G (1993) Relationships between flowering time and fruit set of the entomophilous alpine shrub, Rhododendron aureum (Ericaceae), inhabiting snow patches. Am J Bot 80:1300–1304. https://doi.org/10.2307/2445714

    Article  Google Scholar 

  36. Kudo G, Ida TY (2013) Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94:2311–2320. https://doi.org/10.1890/12-2003.1

    Article  PubMed  Google Scholar 

  37. Kudoh H (2016) Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments. New Phytol 210:399–412. https://doi.org/10.1111/nph.13733

    Article  PubMed  CAS  Google Scholar 

  38. Llaurens V, Castric V, Austerlitz F, Vekemans X (2008) High paternal diversity in the self-incompatible herb Arabidopsis halleri despite clonal reproduction and spatially restricted pollen dispersal. Mol Ecol 17:1577–1588. https://doi.org/10.1111/j.1365-294X.2007.03683.x

    Article  PubMed  CAS  Google Scholar 

  39. Lu M, Zhou X, Yang Q, Li H, Luo Y, Fang C, Chen J, Yang X, Li B (2013) Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology 94:726–738. https://doi.org/10.1890/12-0279.1

    Article  PubMed  Google Scholar 

  40. McCleery RH, Perrins CM (1998) …temperature and egg-laying trends. Nature 391:30–31. https://doi.org/10.1038/34073

    Article  CAS  Google Scholar 

  41. Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecol Lett 10:710–717. https://doi.org/10.1111/j.1461-0248.2007.01061.x

    Article  PubMed  Google Scholar 

  42. Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956. https://doi.org/10.1105/tpc.13.4.935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Miyazaki Y, Maruyama Y, Chiba Y, Kobayashi MJ, Joseph B, Shimizu KK, Mochida K, Hiura T, Kon H, Satake A (2014) Nitrogen as a key regulator of flowering in Fagus crenata: understanding the physiological mechanism of masting by gene expression analysis. Ecol Lett 17:1299–1309. https://doi.org/10.1111/ele.12338

    Article  PubMed  Google Scholar 

  44. Munguía-Rosas MA, Ollerton J, Parra-Tabla V, De-Nova JA (2011) Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecol Lett 14:511–521. https://doi.org/10.1111/j.1461-0248.2011.01601.x

    Article  PubMed  Google Scholar 

  45. Nagano AJ, Sato Y, Mihara M, Antonio BA, Motoyama R, Itoh H, Nagamura Y, Izawa T (2012) Deciphering and prediction of transcriptome dynamics under fluctuating field conditions. Cell 151:1358–1369. https://doi.org/10.1016/j.cell.2012.10.048

    Article  PubMed  CAS  Google Scholar 

  46. O’Kane SL Jr, Al-Shehbaz IA (1997) A synopsis of Arabidopsis (Brassicaceae). Novon 7:323–327. https://doi.org/10.2307/3391949

    Article  Google Scholar 

  47. Ovaskainen O, Skorokhodova S, Yakovleva M, Sukhov A, Kutenkov A, Kutenkova N, Shcherbakov A, Meyke E, del Mar Delgado M (2013) Community-level phenological response to climate change. Proc Natl Acad Sci USA 110:13434–13439. https://doi.org/10.1073/pnas.1305533110

    Article  PubMed  Google Scholar 

  48. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. https://doi.org/10.1038/nature01286

    Article  PubMed  CAS  Google Scholar 

  49. Peñuelas J, Filella I (2001) Responses to a warming world. Science 294:793–795. https://doi.org/10.1126/science.1066860

    Article  PubMed  Google Scholar 

  50. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. https://doi.org/10.1038/nature01333

    Article  PubMed  CAS  Google Scholar 

  51. Satake A, Kawagoe T, Saburi Y, Chiba Y, Sakurai G, Kudoh H (2013) Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes. Nat Commun 4:2303. https://doi.org/10.1038/ncomms3303

    Article  PubMed  CAS  Google Scholar 

  52. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527. https://doi.org/10.1016/j.devcel.2005.01.018

    Article  PubMed  CAS  Google Scholar 

  53. Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289. https://doi.org/10.1126/science.296.5566.285

    Article  PubMed  CAS  Google Scholar 

  54. Van Rossum F, Bonnin I, Fenart S, Pauwels M, Petit D, Saumitou-Laprade P (2004) Spatial genetic structure within a metallicolous population of Arabidopsis halleri, a clonal, self-incompatible and heavy-meta-tolerant species. Mol Ecol 13:2959–2967. https://doi.org/10.1111/j.1365-294X.2004.02314.x

    Article  PubMed  CAS  Google Scholar 

  55. Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749. https://doi.org/10.1016/j.cell.2009.06.014

    Article  PubMed  CAS  Google Scholar 

  56. Wickland DP, Hanzawa Y (2015) The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms. Mol Plant 8:983–997. https://doi.org/10.1016/j.molp.2015.01.007

    Article  PubMed  CAS  Google Scholar 

  57. Yeoh SH, Satake A, Numata S, Ichie T, Lee SL, Basherudin N, Muhammad N, Kondo T, Otani T, Hashim M, Tani N (2017) Unraveling proximate cues of mass flowering in the tropical forests of Southeast Asia from gene expression analyses. Mol Ecol 26:5074–5085. https://doi.org/10.1111/mec.14257

    Article  PubMed  CAS  Google Scholar 

  58. Yumoto T (1987) Pollination systems in a warm temperate evergreen broad-leaved forest on Yaku Island. Ecol Res 2:133–145. https://doi.org/10.1007/BF02346922

    Article  Google Scholar 

  59. Yumoto T (1988) Pollination systems in the cool temperate mixed coniferous and broad-leaved forest zone of Yakushima Island. Ecol Res 3:117–129. https://doi.org/10.1007/BF02346934

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by KAKENHI (JP26251042; JP17H06478), Japan Society for the Promotion of Scince, to A. Satake. The authors would like to thank M. Seki, T. Kawagoe, K. Ohta, M. Imanishi, H. Kudoh, J. Sugisaka for their helps for field sampling, laboratory and common garden experiments. We also thank the two anonymous reviewers and editor for their careful reading of our manuscript and their many insightful comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Akiko Satake.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3374 kb)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagahama, A., Kubota, Y. & Satake, A. Climate warming shortens flowering duration: a comprehensive assessment of plant phenological responses based on gene expression analyses and mathematical modeling. Ecol Res 33, 1059–1068 (2018). https://doi.org/10.1007/s11284-018-1625-x

Download citation

Keywords

  • FLOWERING LOCUS C
  • Phenology
  • Plant–climate interactions
  • Prediction
  • Reproductive ecology