Ecological Research

, Volume 33, Issue 3, pp 609–628 | Cite as

Ultramafic vegetation and soils in the circumboreal region of the Northern Hemisphere

  • Anzhelika Teptina
  • Alexander Paukov
  • Nishanta Rajakaruna
Special Feature Ultramafic Ecosystems: Proceedings of the 9th International Conference on Serpentine Ecology


The paper summarizes literature on climate, soil chemistry, vegetation and metal accumulation by plants found on ultramafic substrata in the circumboreal zone (sensu Takhtajan, Floristic regions of the world, 1986) of the Northern Hemisphere. We present a list of 50 endemic species and 18 ecotypes obligate to ultramafic soils from the circumboreal region of Holarctic, as well as 30 and 2 species of Ni and Zn hyperaccumulators, respectively. The number of both endemics and hyperaccumulators are markedly lower compared to that of the Mediterranean and tropical regions. The diversity of plant communities on ultramafics soils of the circumboral region is also described. The underlying causes for the differences of ultramafic flora between arctic, cold, cool temperate and Mediterranean and tropical regions are also discussed.


Ultramafic vegetation Ultramafic soils Obligate serpentinophytes Edaphic endemism Metal hyperaccumulation 



The authors wish to thank the two anonymous reviewers for their useful comments on the manuscript. The work of AT and AP is financially supported by RFBR (Grant 16-04-01346) and the Ministry of Education and Science of the Russian Federation Agreement no. 02.A03.21.0006.


  1. Adams J (2007) Vegetation–climate interaction. How vegetation makes the global environment. Praxis Publishing Ltd, ChichesterGoogle Scholar
  2. Alekseeva-Popova NV (1970) Elemental chemical composition of plants of the Polar Urals, growing on different rocks. Bot Z 55:1304–1315 (In Russian) Google Scholar
  3. Alekseeva-Popova NV, Drozdova IV (1996) The features of the mineral plant and soil composition on ultrabasic rocks in the Ust-Belskiy massif (the middle reaches of Anadyr river). II. The plants. Bot Z 81:70–78 (In Russian) Google Scholar
  4. Alekseeva-Popova NV, Drozdova IV (2013) Micronutrient composition of plants in the polar urals under contrasting geochemical conditions. Russ J Ecol 44:100–107Google Scholar
  5. Alekseeva-Popova NV, Igoshina TI, Drosdova IV (1995) Metal distribution in the Arctic ecosystems of the Chukotka Peninsula, Russia. Sci Total Environ 160(161):643–652Google Scholar
  6. Alekseeva-Popova NV, Drozdova IV, Kalimova IB (2015) Accumulation of heavy metals by North Caucasian plant species of the Cruciferae family in regards to phytoremediation. Geochem Int 53:456–463Google Scholar
  7. Alexander EB (2004) Varieties of ultramafic soil formation, plant cover, and productivity. In: Boyd RS, Baker AJM, Proctor J (eds) Ultramafic rocks: their soils, vegetation, and fauna. Science Reviews, St. AlbansGoogle Scholar
  8. Alexander EB, Coleman RG, Keeler-Wolf T, Harrison S (2007) Serpentine geoecology of Western North America. Oxford University Press, New YorkGoogle Scholar
  9. Al-Shehbaz IA (2014) A synopsis of the genus Noccaea (Coluteocarpeae, Brassicaceae). Harv Pap Bot 19:25–51Google Scholar
  10. Anacker BL (2011) Phylogenetic patterns of endemism and diversity. In: Harrison SP, Rajakaruna N (eds) Serpentine: the evolution and ecology of a model system. University of California Press, Berkeley, pp 49–70Google Scholar
  11. Armbruster WS (2014) Multiple origins of serpentine-soil endemism explained by preexisting tolerance of open habitats. PNAS 111:14968–14969PubMedPubMedCentralGoogle Scholar
  12. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  13. Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy Metal Tolerance in Plants: Evolutionary aspects. CRC Press, Boca Raton, pp 155–177Google Scholar
  14. Baker AJM, Proctor J, Reeves RD (1992) The vegetation of ultramafic (Serpentine Soils). In: Proceedings of first international conference on serpentine ecology (19–22 June 1991, Davis, California). Intercept, AndoverGoogle Scholar
  15. Bani A, Pavlova D, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulçe S (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Bot Serbica 34:3–14Google Scholar
  16. Bani A, Imeri A, Echevarria G, Pavlova D, Reeves RD, Morel JL, Sulçe S (2013) Nickel hyperaccumulation in serpentine flora of Albania. Fresenius Environ Bull 22:1792–1801Google Scholar
  17. Berazaín R, de la Fuente V, Sánchez-Mata D, Rufo L, Rodríguez N, Amils R (2007) Nickel localization on tissues of hyperaccumulator species of Phyllanthus L. (Euphorbiaceae) from ultramafic areas of Cuba. Biol Trace Element Res 115(1):67–86Google Scholar
  18. Blečić V, Tatić B, Krasnići F (1969) Tri endemične zajednice na serpentinskoj podlozi u Srbiji. Acta Bot Croat 28:43–47Google Scholar
  19. Borhidi A (1992) The serpentine flora and vegetation of Cuba. In: Baker AJM, Proctor J, Reeves RD (eds) The Vegetation of Ultramafic (Serpentine) Soils. In: Proceedings 1st international conference on serpentine ecology. Intercept Ltd., Andover, Hampshire, UK, pp 83–95Google Scholar
  20. Boufford DE, Kartesz JT, Shi S, Zhou R (2014) Packera serpenticola (Asteraceae; Senecioneae), a new species from North Carolina, USA. Syst Bot 39:1027–1030Google Scholar
  21. Boyd R (1998) Hyperaccumulation as a plant defensive strategy. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals, CAB Internetional, Wallingford, pp 181–202Google Scholar
  22. Boyd RS (2012) Plant defense using toxic inorganic ions: conceptual models of the defensive enhancement and joint effects hypotheses. Plant Sci 195:88–95. PubMedGoogle Scholar
  23. Boyd RS (2014) Ecology and evolution of metal-hyperaccumulating plants. In: Rajakaruna N, Boyd R, Harris T (eds) Plant ecology and evolution in harsh environment. Nova Science publishers Inc., New York, pp 227–241Google Scholar
  24. Brady KU, Kruckeberg AR, Bradshaw HDJ (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266Google Scholar
  25. Brearley FQ (2018) Geo-ecological studies on two ultramafic sites in western Ireland. Ecol Res. CrossRefGoogle Scholar
  26. Brooks RR (1983) Biological methods of prospecting for minerals. Wiley, New YorkGoogle Scholar
  27. Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Croom Helm, Dioscorides Press, LondonGoogle Scholar
  28. Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, WallingfordGoogle Scholar
  29. Brooks RR, Radford CC (1978) Nickel accumulation by European species of the genus Alyssum. Proc Royal Soc Lond B 200:217–224Google Scholar
  30. Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y (1979) Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae). Proc R Soc Lond Ser B Biol Sci 203:87–403Google Scholar
  31. Brummitt RK, Kent DH, Lusby PS, Palmer RC (1987) The history and nomenclature of Thomas Edmonston’s endemic Shetland Cerastium. Watsonia 16:291–297Google Scholar
  32. Brysting AK (2008) The arctic mouse-ear in Scotland—and why it is not arctic. Plant Ecol Divers 1:321–327Google Scholar
  33. Burgess J, Szlavecz K, Rajakaruna N, Swan C (2015) Ecotypic differentiation of mid-Atlantic Quercus species in response to ultramafic soils. Aust J Bot 63:308–323Google Scholar
  34. Cacho NI, Strauss SY (2014) Occupation of bare habitats, an evolutionary precursor to soil specialization in plants. Proc Nat Acad Sci USA 111:15132–15137PubMedPubMedCentralGoogle Scholar
  35. Carter SP, Proctor J, Slingsby DR (1987) Soil and vegetation of the Keen of Hamar serpentine, Shetland. J Ecol 75:21–42Google Scholar
  36. Cecchi L, Selvi F (2009) Phylogenetic relationships of the monotypic genera Halacsya and Paramoltkia and the origins of serpentine adaptation in circum mediterranean Lithospermeae (Boraginaceae): insights from ITS and matK DNA sequences. Taxon 58:700–714Google Scholar
  37. Chytrý M (2012) Vegetation of the Czech Republic: diversity, ecology, history and dynamics. Preslia 84:427–504Google Scholar
  38. Chytrý M, Tichý L (2003) Diagnostic, constant and dominant species of vegetation classes and alliances of the Czech Republic: a statistical revision. Masaryk University Brno, Czech RepublicGoogle Scholar
  39. Cody WJ (1983) Adiantum pedatum ssp. calderi, a new subspecies in Northeastern North America. Rhodora 85:93–96Google Scholar
  40. Coombe DE, Frost LC (1956a) The heaths of the Cornish serpentine. J Ecol 44:226–256Google Scholar
  41. Coombe DE, Frost LC (1956b) The nature and origin of the soils over the Cornish serpentine. J Ecol 44:605–615Google Scholar
  42. Dahl E (1998) The phytogeography of Northern Europe (British Isles, Fennoscandia and adjacent areas). Cambridge University Press, New YorkGoogle Scholar
  43. Dennes GE (1845) Proceedings of the botanical society of London. Phytolog 2:95–96Google Scholar
  44. Doksopulo EP (1961) Nickel in rocks, soils, water and plants adjacent to the talc deposits of the Chorchanskaya group. Izdatelstvo Tbiliskogo Universiteta, TbilisiGoogle Scholar
  45. Dostál J (1984) Notes to the nomenclature of the taxa of the Czechoslovac flora. Folia Mus Rer Natur Bohem Occid, Bot, Plzeň 21:1–22Google Scholar
  46. Drozdova IV, Alekseeva-Popova NV (1999) Features of plant and soil mineral composition on ultrabasic rocks in the Ust-Belsky massif (the middle reaches of Anadyr river). III. Plants of family Poaceae, Cyperaceae, Ericaceae. Bot Z 84:1–12 (In Russian) Google Scholar
  47. Drozdova IV, Yurtzev BA (1995) Comparative characteristic of plant mineral composition in different ecological plant groups on serpentinites of Southern Chukotka. Bot Z 80:51–59 (In Russian) Google Scholar
  48. Drozdova IV, Alekseeva-Popova NV, Kalimova IB, Belyaeva AI (2013) Accumulation of heavy metals by some species of Brassicaceae fam. in the North Caucasus. Rastytelnye Resursy 49:370–379 (In Russian) Google Scholar
  49. Dvořáková M (1988) Minuartia smejkalii, eine neue Art aus der Minuartia gerardii—Gruppe (Caryophyllaceae). Preslia 60:1–9Google Scholar
  50. Ernst WHO (1987) Population differentiation in grassland vegetation. In: Van Andel J, Bakker JP, Snaydon RW (eds) Disturbance in grasslands. W. Junk, Dordrecht, pp 213–228Google Scholar
  51. Fischer M, Veljović V, Tatić B (1984) Veronica scardica—a neglected species of the Serbian flora. Glasn Inst Za Bot i Bot Baste Univo u Beogradu 13:37–53Google Scholar
  52. Flinn KM, Mikes JL, Kuhns AD (2017) Plant diversity and community composition in eastern North American serpentine barrens. J Torrey Bot Soc 144:125–138. Google Scholar
  53. Galey ML, van der Ent A, Iqbal MCM, Rajakaruna N (2017) Serpentine geoecology of South and Southeast Asia. Bot Stud 58:1–28. Google Scholar
  54. Gall JE, Rajakaruna N (2013) The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. Brassicaceae: characterization, functional genomics and health benefits. Nova Science Publishers Inc, New York, pp 121–148Google Scholar
  55. García-Gonzalez A, Clark SC (1989) The distribution of Minuartia verna and Thlaspi alpestre in the British Isles in relation to 13 soil metals. Vegetatio 84:87–98Google Scholar
  56. Gawler SC (1983) Note on Adiantum pedatum L. ssp. calderi Cody. Rhodora 85:389–390Google Scholar
  57. Ghaderian SM, Mohtadi A, Rahiminejad R, Reeves RD, Baker AJM (2007a) Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran. Plant Soil 293:91–97Google Scholar
  58. Ghaderian SM, Mohtadi A, Rahiminejad MR, Baker AJM (2007b) Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environ Pollut 145:293–298PubMedGoogle Scholar
  59. Ghasemi R, Chavoshi ZZ, Boyd RS, Rajakaruna N (2014) A preliminary study of the role of nickel in enhancing flowering of the nickel hyperaccumulating plant Alyssum inflatum Nyár. (Brassicaceae). S Afr J Bot 92:47–52Google Scholar
  60. Gustafson DJ, Romano G, Latham RE, Morton JK (2003) Amplified fragment length polymorphism analysis of genetic relationships among the serpentine barrens endemic Cerastium velutinum Rafinesque var. villosissimum Pennell (Caryophyllaceae) and closely related Cerastium species. J Torrey Bot Soc 130:218–223Google Scholar
  61. Harris T, Rajakaruna N (2009) Adiantum viridimontanum, Aspidotis densa, Minuartia marcescens, and Symphyotrichum rhiannon: additional serpentine endemics from eastern North America. Northeastern Nat sp5:111–120Google Scholar
  62. Harris TB, Olday FC, Rajakaruna N (2007) Lichens of Pine Hill, a peridotite outcrop in eastern North America. Rhodora 109:430–447Google Scholar
  63. Harrison SP, Rajakaruna N (eds) (2011) Serpentine: the evolution and ecology of a model system. Univiversity of California Press, BerkeleyGoogle Scholar
  64. Hughes R, Bachmann K, Smirnoff N, Macnair MR (2001) The role of drought tolerance in serpentine tolerance in the Mimulus guttatus Fischer ex DC. Complex. S Afr J Sci 97:81–586Google Scholar
  65. Igoshina KN (1966) Specific features of the flora and vegetation on hyperbasites of the Polar Urals: the example of Mt Rai-Iz. Bot Z 51:322–338 (In Russian) Google Scholar
  66. Jaffré T (1992) Floristic and ecological diversity of the vegetation on ultramafic rocks in New Caledonia. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic soils, Intercept Ltd, Andover, Hampshire, UK, pp 101–107Google Scholar
  67. Janišová M, Barth AS, Kiehl K, Dengler J (2011) Advances in the conservation of dry grasslands: introduction to contributions from the seventh European Dry Grassland Meeting. Plant Biosyst 145:507–513Google Scholar
  68. Jovanović B, Lakušić R, Rizovški R, Trinajstić I, Zupančić M (eds) (1986) Prodromus phytocenosum Yugoslaviae ad mappam vegetationis 1:2,00,000. Scientific Council of the Vegetation Maps of Yugoslavia, Bribir—IlokGoogle Scholar
  69. Jovanović S, Stevanović V, Jovanović-Dunjic R (1992) Contribution to the knowledge on the serpentine vegetation of Serbia. Bull Nat Hist Mus Belgrade 47:43–51Google Scholar
  70. Kabaš E, Alegro A, Kuzmanović N, Jakovljević K, Vukojičić S, Lakušić D (2013) Stipetum novakii ass. nova—a new association of serpentine rocky grassland vegetation (Halacsyetalia sendtneri). Serb Acta Bot Croat 72:169–184Google Scholar
  71. Kaplan Z (1998) Relict serpentine populations of Knautia arvensis s.l. (Dipsacaceae) in the Czech Republic and an adjacent area of Germany. Preslia 70:21–31Google Scholar
  72. Kataeva MN (2013) Availability of elements in tundra soils on acidic and ultramafic rocks in the Polar Urals. Eurasian Soil Sci 46:158–167Google Scholar
  73. Kawase D, Hayashi K, Takeuchi Y, Yumoto T (2010) Population genetic structure of Lilium japonicum and serpentine plant L. japonicum var. abeanum by using developed microsatellite markers. Plant Biosyst 144:29–37Google Scholar
  74. Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508PubMedGoogle Scholar
  75. Kholod SS (2007) Altitudinal and entopic distribution of vascular plants on ultramafic rocks of the Polar Ural. Bot Z 92:289–1319 (In Russian) Google Scholar
  76. Kinzel H (1982) Pflanzenökologie and Mineralstoffwechsel. Ulmer, Stuttgart, p 534Google Scholar
  77. Kitamura S, Momotani Y (1952) Serpentine flora of Island Sugashima, Prov. Shima, Japan. J Phytogeogr Taxon 14:118–119 (In Japanese) Google Scholar
  78. Knjasev MS (2011) Notes on some species of Brassicaceae in Urals and adjacent territories. Novosti Sist Vyssh Rast 42:143–145 (In Russian) Google Scholar
  79. Kolář F, Fér T, Štech M et al (2012) Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid–tetraploid complex of Knautia arvensis (Dipsacaceae). PLoS One 7(7):e39988. PubMedPubMedCentralGoogle Scholar
  80. Kolář F, Kaplan Z, Suda J, Štech M (2015) Populations of Knautia in ecologically distinct refugia on the Hercynian massif belong to two endemic species. Preslia 87:363–386Google Scholar
  81. Kotilanen MJ, Salmi V (1950) Two serpentinicolous forms of Cerastium vulgatum L. in Finland. Ann Bot Soc Zool Bot Fenn Vanamo 5:64–69Google Scholar
  82. Krasniqi E, Millaku F, Rexhepi F, Abdullai K (2008) Flora dhe vegjetacioni në terrenet serpentine të malit drenicë. In: Proceedings international conference on biological and environmental sciences, University of Tirana, Faculty of Natural Sciences, TiranëGoogle Scholar
  83. Kruckeberg AR (1984) California serpentines: flora, vegetation, geology, soils, and management problems. Univ of California Press, BerkeleyGoogle Scholar
  84. Kruckeberg AR (1986) An essay: the stimulus of unusual geologies for plant speciation. Syst Bot 11:455–463Google Scholar
  85. Kruckeberg AR (1992) Plant life of western North American ultramafics. In: Roberts BA, Proctor J (eds) The ecology of areas with serpentinized rocks: a world view. Kluwer Academic Publishers, Dordrecht, pp 31–73Google Scholar
  86. Kruckeberg AR (2002) Geology and plant life: the effects of landforms and rock types on plants. University of Washington Press, SeattleGoogle Scholar
  87. Kulikov PV, Kirsanova OF (2012) Vascular plants reserve “Denezhkin Kamen” (annotated list). In: Novikov VS et al (eds) Flora and fauna reserves. Izdatelstvo komissii RAN, Moscow, pp 1–139 (In Russian) Google Scholar
  88. Kulikov PV, Zolotareva NV, Podgaevskaya EN (2013) Endemic species of the Urals in the flora of Sverdlovsk region. Yekaterinburg, Goshchitskii (In Russian) Google Scholar
  89. Lakušić D, Sabovljević M (2005) Phytocoenological classification of vegetation. In: Lakušić D (ed) Habitats in Serbia, results of the project “Harmonization of national nomenclature in the classification of habitats with the international standards”Google Scholar
  90. Lewis GJ, Bradfield GE (2003) A floristic and ecological analysis at the Tulameen ultramafic (serpentine) complex, Southern British Columbia, Canada. Davidsonia 14:121–128Google Scholar
  91. Lewis GJ, Bradfield GE (2004) Plant community-soil relationships at an ultramafic site in southern British Columbia, Canada. In: Boyd RS, Baker AJM, Proctor J (eds) Ultramafic rocks: their soils, vegetation, and fauna. Science Reviews, St. Albans, pp 191–197Google Scholar
  92. Lewis GJ, Ingram JM, Bradfield GE (2004) Diversity and habitat relationships of bryophytes at an ultramafic site in southern British Columbia, Canada. In: Boyd RS, Baker AJM, Proctor J (eds) Ultramafic rocks: their soils, vegetation, and fauna. Science Reviews, St. Albans, pp 199–204Google Scholar
  93. Malyshev LI (1972) Floristic spectra of Soviet Union. In: Chrshanovsky G, Lavrenko EM, Linczevsky IA (eds) The history of flora and vegetation of Eurasia. Nauka, Leningrad, pp 17–40 (In Russian) Google Scholar
  94. Marin PD, Tatić B (2001) Serpentine soil and plant diversity, with emphasis on the Balkan Peninsula. Bocconea 13:145–150Google Scholar
  95. Marsili S, Roccotiello E, Rellini I, Giordani P, Barberis G, Mariotti MG (2009) Ecological Studies on the Serpentine Endemic Plant Cerastium utriense Barberis. In: Soil and biota of serpentine: a world view. Northeastern Nat sp5:405–421Google Scholar
  96. Martens SN, Boyd RS (2002) The defensive role of Ni hyperaccumulation by plants: a field experiment. Am J Bot 89:998–1003PubMedGoogle Scholar
  97. Mayer E, Greuter W (1985) Aristolochia merxmuelleri, ein neue Serpentin—Endemit aus Sudwest. Serbien Bot Jahr Syst 107:321–327Google Scholar
  98. Mengoni A, Baker AJM, Bazzicalupo M, Reeves RD, Adigüzel N, Chianni E, Galardi F, Gabbrielli R, Gonnelli C (2003) Evolutionary dynamics of nickel hyperaccumulation in Alyssum revealed by its nrDNA analysis. New Phytol 159:691–699Google Scholar
  99. Millaku F, Krasniqi E, Rexhepi R (2011) The association Stipeto-Convolvuletum compacti ass. nova in Kosovo. Hacquetia 10:137–147Google Scholar
  100. Mizuno T, Nosaka S (1992) The distribution and extent of serpentinized areas in Japan. In: Roberts BA, Proctor J (eds) The ecology of areas with serpentinized rocks. Kluwer Academic Publishers, Dordrecht, pp 271–311Google Scholar
  101. Mizuno T, Horie K, Nosaka S, Obata H, Mizuno N (2009) Serpentine plants in Hokkaido and their chemical characteristics. Northeast Nat sp5:65–80Google Scholar
  102. Morton JK (2004) Cerastium velutinum Rafinesque var. villossissimum (Pennell) J. K. Morton. Sida 21:887Google Scholar
  103. Nagy L, Proctor J (1997) Plant growth and reproduction on a toxic alpine ultramafic soil: adaptation to nutrient limitation. New Phytolog 137:267–274Google Scholar
  104. Niketić M (1994) Cerastium neoscardicum, a new species of ser. Alpina from Mt Shar-planina, Serbia. Bull Inst Bot Bot Gard Univ Belgrade Belgrade Yugosl 26–27:63–70Google Scholar
  105. Novák F (1927) Ad florae Serbiae cognitionem additamentum alterum. Preslia 5:65–137Google Scholar
  106. Novák F (1928) Quelques remarques relatives au problème de la vértétation sur les terrains serpentiniques. Preslia 6:42–71Google Scholar
  107. Nyberg Berglund AB, Westerbergh A (2001) Two postglacial immigration lineages of the polyploid Cerastium alpinum (Caryophyllaceae). Hereditas 134:171–183Google Scholar
  108. Nyberg Berglund AB, Saura A, Westerbergh A (2001) Genetic differentiation of a polyploid plant on ultramafic soils in Fennoscandia. S Afr J Sci 97:533–535Google Scholar
  109. Nyberg Berglund AB, Dahlgren S, Westerbergh A (2004) Evidence for parallel evolution and site-specific selection of serpentine tolerance in Cerastium alpinum during the colonization of Scandinavia. New Phytol 161:199–209Google Scholar
  110. O’Dell RE, Rajakaruna N (2011) Intraspecific variation, adaptation, and evolution. In: Harrison SP, Rajakaruna N (eds) Serpentine: the evolution and ecology of a model system Berkeley. University of California Press, Berkeley, pp 97–137Google Scholar
  111. Paris CA (1991) Adiantum viridimontanum, a new maidenhair fern in Eastern North America. Rhodora 93:105–121Google Scholar
  112. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644Google Scholar
  113. Pichi-Sermolli R (1948) Flora e vegetazione delle serpentine e delle altre ofioliti dell’alta valle del Tevere (Toscana). Webbia 6:1–380Google Scholar
  114. Pope N, Harris TB, Rajakaruna N (2010) Vascular plants of adjacent serpentine and granite outcrops on the Deer Isles, Maine, USA. Rhodora 112:105–141Google Scholar
  115. Proctor J (1992) Chemical and ecological studies on the vegetation of ultramafic sites in Britain. In: Roberts BA, Proctor J (eds) The ecology of areas with serpentinized rockes: a world view. Kluwer Academic Publishers, Dordrecht, pp 135–167Google Scholar
  116. Proctor J (1999) Toxins, nutrient shortages and droughts: the serpentine challenge. Trends Ecol Evol 14:334–335Google Scholar
  117. Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol Evol Syst 6:105–124Google Scholar
  118. Proctor J, Woodell SRJ (1971) The plant ecology of serpentine. 1. Serpentine vegetation of England and Scotland. J Ecol 59:375–395Google Scholar
  119. Proctor J, Woodell SRJ (1975) The ecology of serpentine soils. Adv Ecol Res 9:255–366Google Scholar
  120. Proctor J, Alekseeva-Popova NV, Kataeva MN, Kravkina IM, Yurtsev BA, Drozdova IV (2005) Arctic ultramafics: new investigations on Polar Urals vegetation. In: Proceedings of the IV international congress on ultramafic (serpentine) ecology, London, pp 121–136Google Scholar
  121. Rajakaruna N (2004) The edaphic factor in the origin of plant species. Int Geol Rev 46:471–478Google Scholar
  122. Rajakaruna N (2018) Lessons on evolution from the study of edaphic specialization. Bot Rev. (in press) CrossRefGoogle Scholar
  123. Rajakaruna N, Boyd RS (2008) The edaphic factor. In: Jørgensen SE, Fath BD (eds) The encyclopedia of ecology, vol 2. Elsevier, Oxford, pp 1201–1207Google Scholar
  124. Rajakaruna N, Harris TB, Alexander EB (2009) Serpentine geoecology of eastern North America: a review. Rhodora 111:21–108Google Scholar
  125. Raymond M (1955) Une variété nouvelle du Cerastium arvense L. Bull de la Société Bot Fr 102:125–127Google Scholar
  126. Reeves RD (1970) Hyperaccumulation of trace elements by plants. In: Morel J-L, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils, Springer, Netherlands, pp 25–52Google Scholar
  127. Reeves RD (1988) Nickel and zinc accumulation by species of Thlaspi L., Cochlearia L. and other genera of the Brassicaceae. Taxon 37:309–318Google Scholar
  128. Reeves RD, Baker AJM (1984) Studies on metal uptake by plants from serpentine and non-serpentine populations of Thlaspi goesingense Hálácsy (Cruciferae). New Phytol 98:191–204Google Scholar
  129. Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  130. Reeves RD, Brooks RR (1983) European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc. J Geochem Explor 18:275–283Google Scholar
  131. Reeves RD, Brooks RR, Robert J (1980) Nickel accumulation by species of Peltaria Jacq. (Cruciferae). Taxon 29:629–633Google Scholar
  132. Reeves RD, Brooks RR, Macfarlane RM (1981) Nickel uptake by Californian Streptanthus and Caulanthus with particular reference to the hyperaccumulator S. polygaloides Gray (Brassicaceae). Am J Bot 68:708–712Google Scholar
  133. Reeves RD, Baker AJM, Borhidi A, Berazaín R (1996) Nickel accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224PubMedGoogle Scholar
  134. Reeves RD, Baker AJM, Borhidi A, Berazaín R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83:29–38Google Scholar
  135. Reeves RD, Baker AJM, Becquer T, Echevarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soils of Goiás state, Brazil. Plant Soil 293:107–119Google Scholar
  136. Reeves RD, Kruckeberg AR (2018) Re-examination of the elemental composition of some Caryophyllaceae on North American ultramafic soils. Ecol. Res. CrossRefGoogle Scholar
  137. Ritter-Studnička H (1970) Die vegetation der serpentinvorkommen in Bosnien. Vegetatio 21:75–156Google Scholar
  138. Rivas-Martínez S (1997) Syntaxonomical synopsis of the potential natural plant communities of North America, I (Compendio sintaxonómico de la vegetación natural potencial de Norteamérica, I). Itinera Geobot 10:54–90Google Scholar
  139. Roberts BA, Proctor J (1992) The ecology of areas with serpentinized rocks: a world view. Kluwer Academic Publishers, DordrechtGoogle Scholar
  140. Robinson BH, Brooks RR, Kirkman JH, Gregg PEH, Alvarez HV (1997) Edaphic influences on a New Zealand ultramafic (“serpentine”) flora: a statistical approach. Plant Soil 188:11–20Google Scholar
  141. Rodríguez-Rojo MP, Sánchez-Mata D, Rivas-Martínez S, Barbour MG (2001a) Syntaxonomical approach for classification of the Californian serpentine annual grasslands. Lazaroa 22:83–94Google Scholar
  142. Rodríguez-Rojo MP, Sánchez-Mata D, Gavilán RG, Rivas-Martínez S, Barbour MG (2001b) Typology and ecology of the Californian serpentine annual grasslands. J Veg Sci 12:687–698Google Scholar
  143. Rune O (1953) Plant life on serpentine and related rocks in northern Sweden. Acta Phytogeogr Suecica 31:1–139Google Scholar
  144. Rune O (1954) Notes on the flora of the Gaspé Peninsula. Svensk Bot Tidskr 48:117–138Google Scholar
  145. Rune O, Westerberg A (1992) Phytogeographic aspects of the serpentine flora of Scandinavia. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, pp 469–494Google Scholar
  146. Safford HD, Viers JH, Harrison SP (2005) Serpentine endemism in the California flora: a database of serpentine affinity. Madroňo 52:222–257Google Scholar
  147. Sakaguchi S, Horie K, Kimura T et al (2017) Phylogeographic testing of alternative histories of single-origin versus parallel evolution of early flowering serpentine populations of Picris hieracioides L. (Asteraceae) in Japan. Ecol Res. CrossRefGoogle Scholar
  148. Sánchez-Mata D, Rodríguez-Rojo MP (2016) Mediterranean ultramafic (serpentine) chaparrals of California (USA): a geobotanical overview. In: Box EO (ed) Vegetation structure and function at multiple spatial, temporal and conceptual scales. Geobotany Studies. Springer, Berlin, pp 285–312Google Scholar
  149. Sánchez-Mata D, Rodríguez-Rojo MP, Barbour MG (2004) California ultramafic vegetation: biodiversity and phytosociological survey. In: Boyd R et al (eds) Actas de la IV Conferencia Internacional sobre Ecología de Serpentina. Science Reviews, La Habana, pp 177–181Google Scholar
  150. Sánchez-Mata D, de la Fuente V, Rufo L, Rodríguez N, Amils R (2013) Streptanthus purpureus sp. nova (Cruciferae), an endemic nickel hyperaccumulator from Sierra Nevada (California, USA). Lazaroa 34:275–283Google Scholar
  151. Scott W, Palmer R (1987) The flowering plants and ferns of the Shetland Islands. The Shetland Times Ltd, LerwickGoogle Scholar
  152. Severne BC, Brooks RR (1972) A nickel accumulating plant from Western Australia. Planta 103:91–94PubMedGoogle Scholar
  153. Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Tot Environ 209:133–142Google Scholar
  154. Shewry PR, Peterson PJ (1976) Distribution of chromium and nickel in plants and soil from serpentine and other sites. J Ecol 64:195–212Google Scholar
  155. Sirois L, Grandtner MM (1992) A phyto-ecological investigation of the Mount Albert serpentine plateau. In: Roberts BA, Proctor J (eds) The ecology of areas with serpentinized rocks: a world view. Kluwer Academic Publishers, Dordrecht, pp 115–133Google Scholar
  156. Skinner MW, Pavlik BM (1994) California Native Plant Society’s inventory of rare and endangered plants of California. California Native Plant Society Special Publication Number 1, SacramentoGoogle Scholar
  157. Sleep A (1985) Speciation in relation to edaphic factors in the Asplenium adiantum-nigrum group. Proc R Soc Edinb 86:325–334Google Scholar
  158. Spence DHN (1957) Studies on the vegetation of Shetland. I. The serpentine debris vegetation in Unst. J Ecol 45:917–945Google Scholar
  159. Spence DHN (1958) The flora of Unst, Shetland, in relation to geology. Trans Bot Soc Edinb 37:163–173Google Scholar
  160. Spence DHN (1959) Studies on the vegetation of Shetland. II. Reasons for the restriction of exclusive pioneers to serpentine debris. J Ecol 47:641–649Google Scholar
  161. Spence DHN (1970) Scottish serpentine vegetation. Oikos 21:22–31Google Scholar
  162. Spence DHN, Millar EA (1963) An experimental study of the infertility of Shetland serpentine soil. J Ecol 51:333–343Google Scholar
  163. Stace CA (1997) New flora of the British Isles. Cambridge University Press, CambridgeGoogle Scholar
  164. Stamenković M, Andrejić G, Mihailović N, Šinžar-Sekulić J (2017) Hyperaccumulation of Ni by Alyssum murale Waldst. and Kit. from ultramafics in Bosnia and Herzegovina. Appl Ecol Environ Res 15:359–372Google Scholar
  165. Stebbins GL (1984) Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach. Bot Helv 94:1–13Google Scholar
  166. Steele B (1955) Soil pH and base status as factors in the distribution of calcicoles. J Ecol 43:120–132Google Scholar
  167. Štěpánek J (1989) Chrastavec rolní krkonošský—Knautia arvensis (L.) Coulter subsp. pseudolongifolia (Szabó) O. Schwarz. In: Slavík B et al (eds) Studie ČSAV 10: Vybrané ohrožené druhy flóry ČSR. Academia, Praha, pp 25–36 Google Scholar
  168. Stevanović V, Tan K, Iatrou G (2003) Distribution of the endemic Balkan flora on serpentine I: obligate serpentine endemics. Plant Syst Evol 242:149–170Google Scholar
  169. Takhtajan AL (1986) Floristic regions of the world. University of California Press, BerkeleyGoogle Scholar
  170. Tan K, Gjeta E, Mullaj A, Shuka L, Vold G (2013) On the identity of Anchusa leucantha (Boraginaceae) from northern Greece. Phytotaxa 140:35–42Google Scholar
  171. Tatić B, Krivošej Z (1997) Tulipa serbica (Liliaceae), a new species from Serbia. Bocconea 5:733–736Google Scholar
  172. Tatić B, Veljović V (1992) Distribution of serpentinized massifes on the Balkan peninsulas and their ecology. In: Roberts BA, Proctor J (eds) The ecology of areas with serpentinized rocks. A world view. Kluwer Academic Publishers, Dordrecht, pp 199–215Google Scholar
  173. Teptina AY, Paukov AG (2012) Petrophytic plants—accumualtors of heavy metals on the ultramafic rocks of the Urals. In: Mukhin VA (ed) Biological diversity of the plant world of the urals and adjacent territories. Goshchitskii, Yekaterinburg, pp 137–138 (In Russian) Google Scholar
  174. Teptina AY, Paukov AG (2015) Nickel accumulation by species of Alyssum and Noccaea (Brassicaceae) from ultramafic soils in the Urals, Russia. Aust J Bot 62:78–84Google Scholar
  175. Teptina AY, Lebedeva MV, Yamalov SM (2018) Some petrophytic steppe communities of the Middle Urals. Veg Russ 32 (in press, in Russian) Google Scholar
  176. Tomimatsu H, Hoya A, Takahashi H, Ohara M (2004) Genetic diversity and multilocus genetic structure in the relictual endemic herb Japonolirion osense (Petrosaviaceae). J Plant Res 117:13–18PubMedGoogle Scholar
  177. Tomović G, Mihailović N, Tumi A, Gajić B, Mišljenović T, Niketić M (2013) Trace metals in soils and several Brassicaceae plant species from serpentine sites of Serbia. Arch Environ Prot 39:29–49Google Scholar
  178. Tomović G, Niketić M, Lakušić D, Ranđelović V, Stevanović V (2014) Balkan endemic plants in Central Serbia and Kosovo regions: distribution patterns, ecological characteristics, and centres of diversity. Bot J Linn Soc 176:173–202Google Scholar
  179. Tumi AF (2013) Bioaccumulation potential of selected plant species of the family Brassicaceae from serpentine habitats in Serbia. Doctoral Dissertation. BelgradeGoogle Scholar
  180. Tyndall RW, Hull DJC (1999) Vegetation, flora, and plant physiological ecology of serpentine barrens of eastern North America. In: Anderson RC, Fralish JS, Baskin JM (eds) Savannas, barrens, and rock outcrop plant communities of North America. Cambridge University Press, New York, pp 67–82Google Scholar
  181. Tzonev R, Pavlova D, Sánchez-Mata D, de la Fuente V (2013) Contribution to the knowledge of Bulgarian serpentine grasslands an their relationships with Balkan serpentine taxa. Plant Biosyst 147:955–969Google Scholar
  182. Van der Ent A, Jaffré T, L’Huillier L, Gibson N, Reeves RD (2015) The flora of ultramafic soils in the Australia-Pacific Region: state of knowledge and research priorities. Aust J Bot 63:173–190Google Scholar
  183. Vasié O, Diklié N (2001) The flora and vegetation on serpentinites in Serbia—a review. Bocconea 13:151–164Google Scholar
  184. Vassilev K, Pedashenko H, Nikolov SC, Apostolova I, Dengler J (2011) Effect of land abandonment on the vegetation of upland semi-natural grasslands in the Western Balkan Mts., Bulgaria. Plant Biosyst 145:654–665Google Scholar
  185. Verger J-P (1992) Vegetation and soils in the Valle d’Aosta (Italy). In: Baker AJM, Proctor J, Reeves RD (eds) Vegetation of ultramafic (Serpentine) soils. Intercept, Hampshire, pp 175–195Google Scholar
  186. Vicherek J (1970) Ein Beitrag zur Syntaxonomie der Felsspalten- und Rissenpflanzengesellschaften auf Serpentin in Mitteleuropa. Folia Fac Sci Nat Univ Purkynianae Brun Biol 26:83–89Google Scholar
  187. Vit P, Wolfova K, Urfus T, Tajek P, Suda J (2014) Interspecific hybridization between rare and common plant congenersinferred from genome size data: assessing the threat to the Czech serpentine endemic Cerastium alsinifolium. Preslia 86:95–117Google Scholar
  188. Watson HC (1860) Part first of a supplement to the Cybele Britannica. LondonGoogle Scholar
  189. Yurtsev BA, Alekseeva-Popova NV, Kataeva MN (2001) Species diversity of local floras of the Polar Urals under contrasting geochemical conditions. In: Veselov AE (ed) Biodiversity in Northern Europe: Abstract International Conference, Petrozavodsk, pp 204–205Google Scholar
  190. Yurtzev BA, Alexeeva-Popova NV, Drozdova IV, Kataeva MN (2004) Characteristics of Vegetation and Soils of Polar Urals under Geochemical Conditions: 1. Calciphyte and Acidophyte Communities. Bot Z 89:28–41 (In Russian) Google Scholar

Copyright information

© The Ecological Society of Japan 2018

Authors and Affiliations

  1. 1.Institute of Natural Sciences and MathematicsUral Federal UniversityYekaterinburgRussia
  2. 2.Biological Sciences DepartmentCalifornia Polytechnic State UniversitySan Luis ObispoUSA
  3. 3.Unit for Environmental Sciences and ManagementNorth-West UniversityPotchefstroomSouth Africa

Personalised recommendations