Skip to main content
Log in

Ultramafic vegetation and soils in the circumboreal region of the Northern Hemisphere

  • Special Feature
  • Ultramafic Ecosystems: Proceedings of the 9th International Conference on Serpentine Ecology
  • Published:
Ecological Research

Abstract

The paper summarizes literature on climate, soil chemistry, vegetation and metal accumulation by plants found on ultramafic substrata in the circumboreal zone (sensu Takhtajan, Floristic regions of the world, 1986) of the Northern Hemisphere. We present a list of 50 endemic species and 18 ecotypes obligate to ultramafic soils from the circumboreal region of Holarctic, as well as 30 and 2 species of Ni and Zn hyperaccumulators, respectively. The number of both endemics and hyperaccumulators are markedly lower compared to that of the Mediterranean and tropical regions. The diversity of plant communities on ultramafics soils of the circumboral region is also described. The underlying causes for the differences of ultramafic flora between arctic, cold, cool temperate and Mediterranean and tropical regions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Sources: Proctor and Woodell (1971), Proctor (1992), Roberts and Proctor (1992), Ghaderian et al. (2007a, b), Bani et al. (2009, 2010, 2013); Mizuno et al. (2009), Kataeva (2013), Tomović et al. (2013), Tumi (2013), Teptina and Paukov (2015) and Stamenković et al. (2017)

Fig. 2

Sources: Shewry and Peterson (1976), Carter et al. (1987), Garcia-Gonzalez and Clark (1989), Alekseeva-Popova and Drozdova (1996), Ghaderian et al. (Ghaderian et al. 2007a, b), Harris et al. (2007), Mizuno et al. (2009), Kataeva (2013), Tomović et al. (2013), Tumi (2013), Alekseeva-Popova et al. (2015) and Stamenković et al. (2017)

Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams J (2007) Vegetation–climate interaction. How vegetation makes the global environment. Praxis Publishing Ltd, Chichester

    Google Scholar 

  • Alekseeva-Popova NV (1970) Elemental chemical composition of plants of the Polar Urals, growing on different rocks. Bot Z 55:1304–1315 (In Russian)

    CAS  Google Scholar 

  • Alekseeva-Popova NV, Drozdova IV (1996) The features of the mineral plant and soil composition on ultrabasic rocks in the Ust-Belskiy massif (the middle reaches of Anadyr river). II. The plants. Bot Z 81:70–78 (In Russian)

    Google Scholar 

  • Alekseeva-Popova NV, Drozdova IV (2013) Micronutrient composition of plants in the polar urals under contrasting geochemical conditions. Russ J Ecol 44:100–107

    Article  CAS  Google Scholar 

  • Alekseeva-Popova NV, Igoshina TI, Drosdova IV (1995) Metal distribution in the Arctic ecosystems of the Chukotka Peninsula, Russia. Sci Total Environ 160(161):643–652

    Article  Google Scholar 

  • Alekseeva-Popova NV, Drozdova IV, Kalimova IB (2015) Accumulation of heavy metals by North Caucasian plant species of the Cruciferae family in regards to phytoremediation. Geochem Int 53:456–463

    Article  CAS  Google Scholar 

  • Alexander EB (2004) Varieties of ultramafic soil formation, plant cover, and productivity. In: Boyd RS, Baker AJM, Proctor J (eds) Ultramafic rocks: their soils, vegetation, and fauna. Science Reviews, St. Albans

    Google Scholar 

  • Alexander EB, Coleman RG, Keeler-Wolf T, Harrison S (2007) Serpentine geoecology of Western North America. Oxford University Press, New York

    Google Scholar 

  • Al-Shehbaz IA (2014) A synopsis of the genus Noccaea (Coluteocarpeae, Brassicaceae). Harv Pap Bot 19:25–51

    Article  Google Scholar 

  • Anacker BL (2011) Phylogenetic patterns of endemism and diversity. In: Harrison SP, Rajakaruna N (eds) Serpentine: the evolution and ecology of a model system. University of California Press, Berkeley, pp 49–70

    Google Scholar 

  • Armbruster WS (2014) Multiple origins of serpentine-soil endemism explained by preexisting tolerance of open habitats. PNAS 111:14968–14969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy Metal Tolerance in Plants: Evolutionary aspects. CRC Press, Boca Raton, pp 155–177

    Google Scholar 

  • Baker AJM, Proctor J, Reeves RD (1992) The vegetation of ultramafic (Serpentine Soils). In: Proceedings of first international conference on serpentine ecology (19–22 June 1991, Davis, California). Intercept, Andover

  • Bani A, Pavlova D, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulçe S (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Bot Serbica 34:3–14

    Google Scholar 

  • Bani A, Imeri A, Echevarria G, Pavlova D, Reeves RD, Morel JL, Sulçe S (2013) Nickel hyperaccumulation in serpentine flora of Albania. Fresenius Environ Bull 22:1792–1801

    CAS  Google Scholar 

  • Berazaín R, de la Fuente V, Sánchez-Mata D, Rufo L, Rodríguez N, Amils R (2007) Nickel localization on tissues of hyperaccumulator species of Phyllanthus L. (Euphorbiaceae) from ultramafic areas of Cuba. Biol Trace Element Res 115(1):67–86

    Article  Google Scholar 

  • Blečić V, Tatić B, Krasnići F (1969) Tri endemične zajednice na serpentinskoj podlozi u Srbiji. Acta Bot Croat 28:43–47

    Google Scholar 

  • Borhidi A (1992) The serpentine flora and vegetation of Cuba. In: Baker AJM, Proctor J, Reeves RD (eds) The Vegetation of Ultramafic (Serpentine) Soils. In: Proceedings 1st international conference on serpentine ecology. Intercept Ltd., Andover, Hampshire, UK, pp 83–95

  • Boufford DE, Kartesz JT, Shi S, Zhou R (2014) Packera serpenticola (Asteraceae; Senecioneae), a new species from North Carolina, USA. Syst Bot 39:1027–1030

    Article  Google Scholar 

  • Boyd R (1998) Hyperaccumulation as a plant defensive strategy. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals, CAB Internetional, Wallingford, pp 181–202

    Google Scholar 

  • Boyd RS (2012) Plant defense using toxic inorganic ions: conceptual models of the defensive enhancement and joint effects hypotheses. Plant Sci 195:88–95. https://doi.org/10.1016/j.plantsci.2012.06.012

    Article  PubMed  CAS  Google Scholar 

  • Boyd RS (2014) Ecology and evolution of metal-hyperaccumulating plants. In: Rajakaruna N, Boyd R, Harris T (eds) Plant ecology and evolution in harsh environment. Nova Science publishers Inc., New York, pp 227–241

    Google Scholar 

  • Brady KU, Kruckeberg AR, Bradshaw HDJ (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266

    Article  Google Scholar 

  • Brearley FQ (2018) Geo-ecological studies on two ultramafic sites in western Ireland. Ecol Res. https://doi.org/10.1007/s11284-018-1584-2

    Article  Google Scholar 

  • Brooks RR (1983) Biological methods of prospecting for minerals. Wiley, New York

    Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Croom Helm, Dioscorides Press, London

    Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford

    Google Scholar 

  • Brooks RR, Radford CC (1978) Nickel accumulation by European species of the genus Alyssum. Proc Royal Soc Lond B 200:217–224

    Article  CAS  Google Scholar 

  • Brooks RR, Morrison RS, Reeves RD, Dudley TR, Akman Y (1979) Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae). Proc R Soc Lond Ser B Biol Sci 203:87–403

    Article  Google Scholar 

  • Brummitt RK, Kent DH, Lusby PS, Palmer RC (1987) The history and nomenclature of Thomas Edmonston’s endemic Shetland Cerastium. Watsonia 16:291–297

    Google Scholar 

  • Brysting AK (2008) The arctic mouse-ear in Scotland—and why it is not arctic. Plant Ecol Divers 1:321–327

    Article  Google Scholar 

  • Burgess J, Szlavecz K, Rajakaruna N, Swan C (2015) Ecotypic differentiation of mid-Atlantic Quercus species in response to ultramafic soils. Aust J Bot 63:308–323

    Article  CAS  Google Scholar 

  • Cacho NI, Strauss SY (2014) Occupation of bare habitats, an evolutionary precursor to soil specialization in plants. Proc Nat Acad Sci USA 111:15132–15137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carter SP, Proctor J, Slingsby DR (1987) Soil and vegetation of the Keen of Hamar serpentine, Shetland. J Ecol 75:21–42

    Article  CAS  Google Scholar 

  • Cecchi L, Selvi F (2009) Phylogenetic relationships of the monotypic genera Halacsya and Paramoltkia and the origins of serpentine adaptation in circum mediterranean Lithospermeae (Boraginaceae): insights from ITS and matK DNA sequences. Taxon 58:700–714

    Google Scholar 

  • Chytrý M (2012) Vegetation of the Czech Republic: diversity, ecology, history and dynamics. Preslia 84:427–504

    Google Scholar 

  • Chytrý M, Tichý L (2003) Diagnostic, constant and dominant species of vegetation classes and alliances of the Czech Republic: a statistical revision. Masaryk University Brno, Czech Republic

    Google Scholar 

  • Cody WJ (1983) Adiantum pedatum ssp. calderi, a new subspecies in Northeastern North America. Rhodora 85:93–96

    Google Scholar 

  • Coombe DE, Frost LC (1956a) The heaths of the Cornish serpentine. J Ecol 44:226–256

    Article  Google Scholar 

  • Coombe DE, Frost LC (1956b) The nature and origin of the soils over the Cornish serpentine. J Ecol 44:605–615

    Article  Google Scholar 

  • Dahl E (1998) The phytogeography of Northern Europe (British Isles, Fennoscandia and adjacent areas). Cambridge University Press, New York

    Book  Google Scholar 

  • Dennes GE (1845) Proceedings of the botanical society of London. Phytolog 2:95–96

    Google Scholar 

  • Doksopulo EP (1961) Nickel in rocks, soils, water and plants adjacent to the talc deposits of the Chorchanskaya group. Izdatelstvo Tbiliskogo Universiteta, Tbilisi

    Google Scholar 

  • Dostál J (1984) Notes to the nomenclature of the taxa of the Czechoslovac flora. Folia Mus Rer Natur Bohem Occid, Bot, Plzeň 21:1–22

    Google Scholar 

  • Drozdova IV, Alekseeva-Popova NV (1999) Features of plant and soil mineral composition on ultrabasic rocks in the Ust-Belsky massif (the middle reaches of Anadyr river). III. Plants of family Poaceae, Cyperaceae, Ericaceae. Bot Z 84:1–12 (In Russian)

    Google Scholar 

  • Drozdova IV, Yurtzev BA (1995) Comparative characteristic of plant mineral composition in different ecological plant groups on serpentinites of Southern Chukotka. Bot Z 80:51–59 (In Russian)

    Google Scholar 

  • Drozdova IV, Alekseeva-Popova NV, Kalimova IB, Belyaeva AI (2013) Accumulation of heavy metals by some species of Brassicaceae fam. in the North Caucasus. Rastytelnye Resursy 49:370–379 (In Russian)

    CAS  Google Scholar 

  • Dvořáková M (1988) Minuartia smejkalii, eine neue Art aus der Minuartia gerardii—Gruppe (Caryophyllaceae). Preslia 60:1–9

    Google Scholar 

  • Ernst WHO (1987) Population differentiation in grassland vegetation. In: Van Andel J, Bakker JP, Snaydon RW (eds) Disturbance in grasslands. W. Junk, Dordrecht, pp 213–228

    Chapter  Google Scholar 

  • Fischer M, Veljović V, Tatić B (1984) Veronica scardica—a neglected species of the Serbian flora. Glasn Inst Za Bot i Bot Baste Univo u Beogradu 13:37–53

    Google Scholar 

  • Flinn KM, Mikes JL, Kuhns AD (2017) Plant diversity and community composition in eastern North American serpentine barrens. J Torrey Bot Soc 144:125–138. https://doi.org/10.3159/TORREY-D-16-00030

    Article  Google Scholar 

  • Galey ML, van der Ent A, Iqbal MCM, Rajakaruna N (2017) Serpentine geoecology of South and Southeast Asia. Bot Stud 58:1–28. https://doi.org/10.1186/s40529-017-0167-9

    Article  Google Scholar 

  • Gall JE, Rajakaruna N (2013) The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. Brassicaceae: characterization, functional genomics and health benefits. Nova Science Publishers Inc, New York, pp 121–148

    Google Scholar 

  • García-Gonzalez A, Clark SC (1989) The distribution of Minuartia verna and Thlaspi alpestre in the British Isles in relation to 13 soil metals. Vegetatio 84:87–98

    Article  Google Scholar 

  • Gawler SC (1983) Note on Adiantum pedatum L. ssp. calderi Cody. Rhodora 85:389–390

    Google Scholar 

  • Ghaderian SM, Mohtadi A, Rahiminejad R, Reeves RD, Baker AJM (2007a) Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran. Plant Soil 293:91–97

    Article  CAS  Google Scholar 

  • Ghaderian SM, Mohtadi A, Rahiminejad MR, Baker AJM (2007b) Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environ Pollut 145:293–298

    Article  PubMed  CAS  Google Scholar 

  • Ghasemi R, Chavoshi ZZ, Boyd RS, Rajakaruna N (2014) A preliminary study of the role of nickel in enhancing flowering of the nickel hyperaccumulating plant Alyssum inflatum Nyár. (Brassicaceae). S Afr J Bot 92:47–52

    Article  CAS  Google Scholar 

  • Gustafson DJ, Romano G, Latham RE, Morton JK (2003) Amplified fragment length polymorphism analysis of genetic relationships among the serpentine barrens endemic Cerastium velutinum Rafinesque var. villosissimum Pennell (Caryophyllaceae) and closely related Cerastium species. J Torrey Bot Soc 130:218–223

    Article  Google Scholar 

  • Harris T, Rajakaruna N (2009) Adiantum viridimontanum, Aspidotis densa, Minuartia marcescens, and Symphyotrichum rhiannon: additional serpentine endemics from eastern North America. Northeastern Nat sp5:111–120

    Article  Google Scholar 

  • Harris TB, Olday FC, Rajakaruna N (2007) Lichens of Pine Hill, a peridotite outcrop in eastern North America. Rhodora 109:430–447

    Article  Google Scholar 

  • Harrison SP, Rajakaruna N (eds) (2011) Serpentine: the evolution and ecology of a model system. Univiversity of California Press, Berkeley

    Google Scholar 

  • Hughes R, Bachmann K, Smirnoff N, Macnair MR (2001) The role of drought tolerance in serpentine tolerance in the Mimulus guttatus Fischer ex DC. Complex. S Afr J Sci 97:81–586

    Google Scholar 

  • Igoshina KN (1966) Specific features of the flora and vegetation on hyperbasites of the Polar Urals: the example of Mt Rai-Iz. Bot Z 51:322–338 (In Russian)

    Google Scholar 

  • Jaffré T (1992) Floristic and ecological diversity of the vegetation on ultramafic rocks in New Caledonia. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic soils, Intercept Ltd, Andover, Hampshire, UK, pp 101–107

    Google Scholar 

  • Janišová M, Barth AS, Kiehl K, Dengler J (2011) Advances in the conservation of dry grasslands: introduction to contributions from the seventh European Dry Grassland Meeting. Plant Biosyst 145:507–513

    Article  Google Scholar 

  • Jovanović B, Lakušić R, Rizovški R, Trinajstić I, Zupančić M (eds) (1986) Prodromus phytocenosum Yugoslaviae ad mappam vegetationis 1:2,00,000. Scientific Council of the Vegetation Maps of Yugoslavia, Bribir—Ilok

  • Jovanović S, Stevanović V, Jovanović-Dunjic R (1992) Contribution to the knowledge on the serpentine vegetation of Serbia. Bull Nat Hist Mus Belgrade 47:43–51

    Google Scholar 

  • Kabaš E, Alegro A, Kuzmanović N, Jakovljević K, Vukojičić S, Lakušić D (2013) Stipetum novakii ass. nova—a new association of serpentine rocky grassland vegetation (Halacsyetalia sendtneri). Serb Acta Bot Croat 72:169–184

    Article  Google Scholar 

  • Kaplan Z (1998) Relict serpentine populations of Knautia arvensis s.l. (Dipsacaceae) in the Czech Republic and an adjacent area of Germany. Preslia 70:21–31

    Google Scholar 

  • Kataeva MN (2013) Availability of elements in tundra soils on acidic and ultramafic rocks in the Polar Urals. Eurasian Soil Sci 46:158–167

    Article  CAS  Google Scholar 

  • Kawase D, Hayashi K, Takeuchi Y, Yumoto T (2010) Population genetic structure of Lilium japonicum and serpentine plant L. japonicum var. abeanum by using developed microsatellite markers. Plant Biosyst 144:29–37

    Article  Google Scholar 

  • Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508

    PubMed  CAS  Google Scholar 

  • Kholod SS (2007) Altitudinal and entopic distribution of vascular plants on ultramafic rocks of the Polar Ural. Bot Z 92:289–1319 (In Russian)

    Google Scholar 

  • Kinzel H (1982) Pflanzenökologie and Mineralstoffwechsel. Ulmer, Stuttgart, p 534

    Google Scholar 

  • Kitamura S, Momotani Y (1952) Serpentine flora of Island Sugashima, Prov. Shima, Japan. J Phytogeogr Taxon 14:118–119 (In Japanese)

    Google Scholar 

  • Knjasev MS (2011) Notes on some species of Brassicaceae in Urals and adjacent territories. Novosti Sist Vyssh Rast 42:143–145 (In Russian)

    Google Scholar 

  • Kolář F, Fér T, Štech M et al (2012) Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid–tetraploid complex of Knautia arvensis (Dipsacaceae). PLoS One 7(7):e39988. https://doi.org/10.1371/journal.pone.0039988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kolář F, Kaplan Z, Suda J, Štech M (2015) Populations of Knautia in ecologically distinct refugia on the Hercynian massif belong to two endemic species. Preslia 87:363–386

    Google Scholar 

  • Kotilanen MJ, Salmi V (1950) Two serpentinicolous forms of Cerastium vulgatum L. in Finland. Ann Bot Soc Zool Bot Fenn Vanamo 5:64–69

    Google Scholar 

  • Krasniqi E, Millaku F, Rexhepi F, Abdullai K (2008) Flora dhe vegjetacioni në terrenet serpentine të malit drenicë. In: Proceedings international conference on biological and environmental sciences, University of Tirana, Faculty of Natural Sciences, Tiranë

  • Kruckeberg AR (1984) California serpentines: flora, vegetation, geology, soils, and management problems. Univ of California Press, Berkeley

    Google Scholar 

  • Kruckeberg AR (1986) An essay: the stimulus of unusual geologies for plant speciation. Syst Bot 11:455–463

    Article  Google Scholar 

  • Kruckeberg AR (1992) Plant life of western North American ultramafics. In: Roberts BA, Proctor J (eds) The ecology of areas with serpentinized rocks: a world view. Kluwer Academic Publishers, Dordrecht, pp 31–73

    Chapter  Google Scholar 

  • Kruckeberg AR (2002) Geology and plant life: the effects of landforms and rock types on plants. University of Washington Press, Seattle

    Google Scholar 

  • Kulikov PV, Kirsanova OF (2012) Vascular plants reserve “Denezhkin Kamen” (annotated list). In: Novikov VS et al (eds) Flora and fauna reserves. Izdatelstvo komissii RAN, Moscow, pp 1–139 (In Russian)

    Google Scholar 

  • Kulikov PV, Zolotareva NV, Podgaevskaya EN (2013) Endemic species of the Urals in the flora of Sverdlovsk region. Yekaterinburg, Goshchitskii (In Russian)

    Google Scholar 

  • Lakušić D, Sabovljević M (2005) Phytocoenological classification of vegetation. In: Lakušić D (ed) Habitats in Serbia, results of the project “Harmonization of national nomenclature in the classification of habitats with the international standards”

  • Lewis GJ, Bradfield GE (2003) A floristic and ecological analysis at the Tulameen ultramafic (serpentine) complex, Southern British Columbia, Canada. Davidsonia 14:121–128

    Google Scholar 

  • Lewis GJ, Bradfield GE (2004) Plant community-soil relationships at an ultramafic site in southern British Columbia, Canada. In: Boyd RS, Baker AJM, Proctor J (eds) Ultramafic rocks: their soils, vegetation, and fauna. Science Reviews, St. Albans, pp 191–197

    Google Scholar 

  • Lewis GJ, Ingram JM, Bradfield GE (2004) Diversity and habitat relationships of bryophytes at an ultramafic site in southern British Columbia, Canada. In: Boyd RS, Baker AJM, Proctor J (eds) Ultramafic rocks: their soils, vegetation, and fauna. Science Reviews, St. Albans, pp 199–204

    Google Scholar 

  • Malyshev LI (1972) Floristic spectra of Soviet Union. In: Chrshanovsky G, Lavrenko EM, Linczevsky IA (eds) The history of flora and vegetation of Eurasia. Nauka, Leningrad, pp 17–40 (In Russian)

    Google Scholar 

  • Marin PD, Tatić B (2001) Serpentine soil and plant diversity, with emphasis on the Balkan Peninsula. Bocconea 13:145–150

    Google Scholar 

  • Marsili S, Roccotiello E, Rellini I, Giordani P, Barberis G, Mariotti MG (2009) Ecological Studies on the Serpentine Endemic Plant Cerastium utriense Barberis. In: Soil and biota of serpentine: a world view. Northeastern Nat sp5:405–421

  • Martens SN, Boyd RS (2002) The defensive role of Ni hyperaccumulation by plants: a field experiment. Am J Bot 89:998–1003

    Article  PubMed  Google Scholar 

  • Mayer E, Greuter W (1985) Aristolochia merxmuelleri, ein neue Serpentin—Endemit aus Sudwest. Serbien Bot Jahr Syst 107:321–327

    Google Scholar 

  • Mengoni A, Baker AJM, Bazzicalupo M, Reeves RD, Adigüzel N, Chianni E, Galardi F, Gabbrielli R, Gonnelli C (2003) Evolutionary dynamics of nickel hyperaccumulation in Alyssum revealed by its nrDNA analysis. New Phytol 159:691–699

    Article  CAS  Google Scholar 

  • Millaku F, Krasniqi E, Rexhepi R (2011) The association Stipeto-Convolvuletum compacti ass. nova in Kosovo. Hacquetia 10:137–147

    Article  Google Scholar 

  • Mizuno T, Nosaka S (1992) The distribution and extent of serpentinized areas in Japan. In: Roberts BA, Proctor J (eds) The ecology of areas with serpentinized rocks. Kluwer Academic Publishers, Dordrecht, pp 271–311

    Chapter  Google Scholar 

  • Mizuno T, Horie K, Nosaka S, Obata H, Mizuno N (2009) Serpentine plants in Hokkaido and their chemical characteristics. Northeast Nat sp5:65–80

    Article  Google Scholar 

  • Morton JK (2004) Cerastium velutinum Rafinesque var. villossissimum (Pennell) J. K. Morton. Sida 21:887

    Google Scholar 

  • Nagy L, Proctor J (1997) Plant growth and reproduction on a toxic alpine ultramafic soil: adaptation to nutrient limitation. New Phytolog 137:267–274

    Article  CAS  Google Scholar 

  • Niketić M (1994) Cerastium neoscardicum, a new species of ser. Alpina from Mt Shar-planina, Serbia. Bull Inst Bot Bot Gard Univ Belgrade Belgrade Yugosl 26–27:63–70

    Google Scholar 

  • Novák F (1927) Ad florae Serbiae cognitionem additamentum alterum. Preslia 5:65–137

    Google Scholar 

  • Novák F (1928) Quelques remarques relatives au problème de la vértétation sur les terrains serpentiniques. Preslia 6:42–71

    Google Scholar 

  • Nyberg Berglund AB, Westerbergh A (2001) Two postglacial immigration lineages of the polyploid Cerastium alpinum (Caryophyllaceae). Hereditas 134:171–183

    Article  Google Scholar 

  • Nyberg Berglund AB, Saura A, Westerbergh A (2001) Genetic differentiation of a polyploid plant on ultramafic soils in Fennoscandia. S Afr J Sci 97:533–535

    Google Scholar 

  • Nyberg Berglund AB, Dahlgren S, Westerbergh A (2004) Evidence for parallel evolution and site-specific selection of serpentine tolerance in Cerastium alpinum during the colonization of Scandinavia. New Phytol 161:199–209

    Article  CAS  Google Scholar 

  • O’Dell RE, Rajakaruna N (2011) Intraspecific variation, adaptation, and evolution. In: Harrison SP, Rajakaruna N (eds) Serpentine: the evolution and ecology of a model system Berkeley. University of California Press, Berkeley, pp 97–137

    Google Scholar 

  • Paris CA (1991) Adiantum viridimontanum, a new maidenhair fern in Eastern North America. Rhodora 93:105–121

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Pichi-Sermolli R (1948) Flora e vegetazione delle serpentine e delle altre ofioliti dell’alta valle del Tevere (Toscana). Webbia 6:1–380

    Article  Google Scholar 

  • Pope N, Harris TB, Rajakaruna N (2010) Vascular plants of adjacent serpentine and granite outcrops on the Deer Isles, Maine, USA. Rhodora 112:105–141

    Article  Google Scholar 

  • Proctor J (1992) Chemical and ecological studies on the vegetation of ultramafic sites in Britain. In: Roberts BA, Proctor J (eds) The ecology of areas with serpentinized rockes: a world view. Kluwer Academic Publishers, Dordrecht, pp 135–167

    Chapter  Google Scholar 

  • Proctor J (1999) Toxins, nutrient shortages and droughts: the serpentine challenge. Trends Ecol Evol 14:334–335

    Article  Google Scholar 

  • Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol Evol Syst 6:105–124

    Article  Google Scholar 

  • Proctor J, Woodell SRJ (1971) The plant ecology of serpentine. 1. Serpentine vegetation of England and Scotland. J Ecol 59:375–395

    Article  Google Scholar 

  • Proctor J, Woodell SRJ (1975) The ecology of serpentine soils. Adv Ecol Res 9:255–366

    Article  Google Scholar 

  • Proctor J, Alekseeva-Popova NV, Kataeva MN, Kravkina IM, Yurtsev BA, Drozdova IV (2005) Arctic ultramafics: new investigations on Polar Urals vegetation. In: Proceedings of the IV international congress on ultramafic (serpentine) ecology, London, pp 121–136

  • Rajakaruna N (2004) The edaphic factor in the origin of plant species. Int Geol Rev 46:471–478

    Article  Google Scholar 

  • Rajakaruna N (2018) Lessons on evolution from the study of edaphic specialization. Bot Rev. https://doi.org/10.1007/s12229-017-9193-2 (in press)

    Article  Google Scholar 

  • Rajakaruna N, Boyd RS (2008) The edaphic factor. In: Jørgensen SE, Fath BD (eds) The encyclopedia of ecology, vol 2. Elsevier, Oxford, pp 1201–1207

    Chapter  Google Scholar 

  • Rajakaruna N, Harris TB, Alexander EB (2009) Serpentine geoecology of eastern North America: a review. Rhodora 111:21–108

    Article  Google Scholar 

  • Raymond M (1955) Une variété nouvelle du Cerastium arvense L. Bull de la Société Bot Fr 102:125–127

    Article  Google Scholar 

  • Reeves RD (1970) Hyperaccumulation of trace elements by plants. In: Morel J-L, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils, Springer, Netherlands, pp 25–52

    Google Scholar 

  • Reeves RD (1988) Nickel and zinc accumulation by species of Thlaspi L., Cochlearia L. and other genera of the Brassicaceae. Taxon 37:309–318

    Article  Google Scholar 

  • Reeves RD, Baker AJM (1984) Studies on metal uptake by plants from serpentine and non-serpentine populations of Thlaspi goesingense Hálácsy (Cruciferae). New Phytol 98:191–204

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Reeves RD, Brooks RR (1983) European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc. J Geochem Explor 18:275–283

    Article  CAS  Google Scholar 

  • Reeves RD, Brooks RR, Robert J (1980) Nickel accumulation by species of Peltaria Jacq. (Cruciferae). Taxon 29:629–633

    Article  Google Scholar 

  • Reeves RD, Brooks RR, Macfarlane RM (1981) Nickel uptake by Californian Streptanthus and Caulanthus with particular reference to the hyperaccumulator S. polygaloides Gray (Brassicaceae). Am J Bot 68:708–712

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazaín R (1996) Nickel accumulating plants from the ancient serpentine soils of Cuba. New Phytol 133:217–224

    Article  PubMed  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Borhidi A, Berazaín R (1999) Nickel hyperaccumulation in the serpentine flora of Cuba. Ann Bot 83:29–38

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Becquer T, Echevarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soils of Goiás state, Brazil. Plant Soil 293:107–119

    Article  CAS  Google Scholar 

  • Reeves RD, Kruckeberg AR (2018) Re-examination of the elemental composition of some Caryophyllaceae on North American ultramafic soils. Ecol. Res. https://doi.org/10.1007/s11284-017-1556-y

    Article  Google Scholar 

  • Ritter-Studnička H (1970) Die vegetation der serpentinvorkommen in Bosnien. Vegetatio 21:75–156

    Article  Google Scholar 

  • Rivas-Martínez S (1997) Syntaxonomical synopsis of the potential natural plant communities of North America, I (Compendio sintaxonómico de la vegetación natural potencial de Norteamérica, I). Itinera Geobot 10:54–90

    Google Scholar 

  • Roberts BA, Proctor J (1992) The ecology of areas with serpentinized rocks: a world view. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Robinson BH, Brooks RR, Kirkman JH, Gregg PEH, Alvarez HV (1997) Edaphic influences on a New Zealand ultramafic (“serpentine”) flora: a statistical approach. Plant Soil 188:11–20

    Article  CAS  Google Scholar 

  • Rodríguez-Rojo MP, Sánchez-Mata D, Rivas-Martínez S, Barbour MG (2001a) Syntaxonomical approach for classification of the Californian serpentine annual grasslands. Lazaroa 22:83–94

    Google Scholar 

  • Rodríguez-Rojo MP, Sánchez-Mata D, Gavilán RG, Rivas-Martínez S, Barbour MG (2001b) Typology and ecology of the Californian serpentine annual grasslands. J Veg Sci 12:687–698

    Article  Google Scholar 

  • Rune O (1953) Plant life on serpentine and related rocks in northern Sweden. Acta Phytogeogr Suecica 31:1–139

    Google Scholar 

  • Rune O (1954) Notes on the flora of the Gaspé Peninsula. Svensk Bot Tidskr 48:117–138

    Google Scholar 

  • Rune O, Westerberg A (1992) Phytogeographic aspects of the serpentine flora of Scandinavia. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept, Andover, pp 469–494

    Google Scholar 

  • Safford HD, Viers JH, Harrison SP (2005) Serpentine endemism in the California flora: a database of serpentine affinity. Madroňo 52:222–257

    Google Scholar 

  • Sakaguchi S, Horie K, Kimura T et al (2017) Phylogeographic testing of alternative histories of single-origin versus parallel evolution of early flowering serpentine populations of Picris hieracioides L. (Asteraceae) in Japan. Ecol Res. https://doi.org/10.1007/s11284-017-1536-2

    Article  Google Scholar 

  • Sánchez-Mata D, Rodríguez-Rojo MP (2016) Mediterranean ultramafic (serpentine) chaparrals of California (USA): a geobotanical overview. In: Box EO (ed) Vegetation structure and function at multiple spatial, temporal and conceptual scales. Geobotany Studies. Springer, Berlin, pp 285–312

    Google Scholar 

  • Sánchez-Mata D, Rodríguez-Rojo MP, Barbour MG (2004) California ultramafic vegetation: biodiversity and phytosociological survey. In: Boyd R et al (eds) Actas de la IV Conferencia Internacional sobre Ecología de Serpentina. Science Reviews, La Habana, pp 177–181

    Google Scholar 

  • Sánchez-Mata D, de la Fuente V, Rufo L, Rodríguez N, Amils R (2013) Streptanthus purpureus sp. nova (Cruciferae), an endemic nickel hyperaccumulator from Sierra Nevada (California, USA). Lazaroa 34:275–283

    Article  Google Scholar 

  • Scott W, Palmer R (1987) The flowering plants and ferns of the Shetland Islands. The Shetland Times Ltd, Lerwick

    Google Scholar 

  • Severne BC, Brooks RR (1972) A nickel accumulating plant from Western Australia. Planta 103:91–94

    Article  PubMed  CAS  Google Scholar 

  • Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Tot Environ 209:133–142

    Article  CAS  Google Scholar 

  • Shewry PR, Peterson PJ (1976) Distribution of chromium and nickel in plants and soil from serpentine and other sites. J Ecol 64:195–212

    Article  CAS  Google Scholar 

  • Sirois L, Grandtner MM (1992) A phyto-ecological investigation of the Mount Albert serpentine plateau. In: Roberts BA, Proctor J (eds) The ecology of areas with serpentinized rocks: a world view. Kluwer Academic Publishers, Dordrecht, pp 115–133

    Chapter  Google Scholar 

  • Skinner MW, Pavlik BM (1994) California Native Plant Society’s inventory of rare and endangered plants of California. California Native Plant Society Special Publication Number 1, Sacramento

  • Sleep A (1985) Speciation in relation to edaphic factors in the Asplenium adiantum-nigrum group. Proc R Soc Edinb 86:325–334

    Google Scholar 

  • Spence DHN (1957) Studies on the vegetation of Shetland. I. The serpentine debris vegetation in Unst. J Ecol 45:917–945

    Article  Google Scholar 

  • Spence DHN (1958) The flora of Unst, Shetland, in relation to geology. Trans Bot Soc Edinb 37:163–173

    Article  Google Scholar 

  • Spence DHN (1959) Studies on the vegetation of Shetland. II. Reasons for the restriction of exclusive pioneers to serpentine debris. J Ecol 47:641–649

    Article  Google Scholar 

  • Spence DHN (1970) Scottish serpentine vegetation. Oikos 21:22–31

    Article  Google Scholar 

  • Spence DHN, Millar EA (1963) An experimental study of the infertility of Shetland serpentine soil. J Ecol 51:333–343

    Article  Google Scholar 

  • Stace CA (1997) New flora of the British Isles. Cambridge University Press, Cambridge

    Google Scholar 

  • Stamenković M, Andrejić G, Mihailović N, Šinžar-Sekulić J (2017) Hyperaccumulation of Ni by Alyssum murale Waldst. and Kit. from ultramafics in Bosnia and Herzegovina. Appl Ecol Environ Res 15:359–372

    Article  Google Scholar 

  • Stebbins GL (1984) Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach. Bot Helv 94:1–13

    Google Scholar 

  • Steele B (1955) Soil pH and base status as factors in the distribution of calcicoles. J Ecol 43:120–132

    Article  Google Scholar 

  • Štěpánek J (1989) Chrastavec rolní krkonošský—Knautia arvensis (L.) Coulter subsp. pseudolongifolia (Szabó) O. Schwarz. In: Slavík B et al (eds) Studie ČSAV 10: Vybrané ohrožené druhy flóry ČSR. Academia, Praha, pp 25–36

    Google Scholar 

  • Stevanović V, Tan K, Iatrou G (2003) Distribution of the endemic Balkan flora on serpentine I: obligate serpentine endemics. Plant Syst Evol 242:149–170

    Article  Google Scholar 

  • Takhtajan AL (1986) Floristic regions of the world. University of California Press, Berkeley

    Google Scholar 

  • Tan K, Gjeta E, Mullaj A, Shuka L, Vold G (2013) On the identity of Anchusa leucantha (Boraginaceae) from northern Greece. Phytotaxa 140:35–42

    Article  Google Scholar 

  • Tatić B, Krivošej Z (1997) Tulipa serbica (Liliaceae), a new species from Serbia. Bocconea 5:733–736

    Google Scholar 

  • Tatić B, Veljović V (1992) Distribution of serpentinized massifes on the Balkan peninsulas and their ecology. In: Roberts BA, Proctor J (eds) The ecology of areas with serpentinized rocks. A world view. Kluwer Academic Publishers, Dordrecht, pp 199–215

    Chapter  Google Scholar 

  • Teptina AY, Paukov AG (2012) Petrophytic plants—accumualtors of heavy metals on the ultramafic rocks of the Urals. In: Mukhin VA (ed) Biological diversity of the plant world of the urals and adjacent territories. Goshchitskii, Yekaterinburg, pp 137–138 (In Russian)

    Google Scholar 

  • Teptina AY, Paukov AG (2015) Nickel accumulation by species of Alyssum and Noccaea (Brassicaceae) from ultramafic soils in the Urals, Russia. Aust J Bot 62:78–84

    Google Scholar 

  • Teptina AY, Lebedeva MV, Yamalov SM (2018) Some petrophytic steppe communities of the Middle Urals. Veg Russ 32 (in press, in Russian)

  • Tomimatsu H, Hoya A, Takahashi H, Ohara M (2004) Genetic diversity and multilocus genetic structure in the relictual endemic herb Japonolirion osense (Petrosaviaceae). J Plant Res 117:13–18

    Article  PubMed  Google Scholar 

  • Tomović G, Mihailović N, Tumi A, Gajić B, Mišljenović T, Niketić M (2013) Trace metals in soils and several Brassicaceae plant species from serpentine sites of Serbia. Arch Environ Prot 39:29–49

    Article  CAS  Google Scholar 

  • Tomović G, Niketić M, Lakušić D, Ranđelović V, Stevanović V (2014) Balkan endemic plants in Central Serbia and Kosovo regions: distribution patterns, ecological characteristics, and centres of diversity. Bot J Linn Soc 176:173–202

    Google Scholar 

  • Tumi AF (2013) Bioaccumulation potential of selected plant species of the family Brassicaceae from serpentine habitats in Serbia. Doctoral Dissertation. Belgrade

  • Tyndall RW, Hull DJC (1999) Vegetation, flora, and plant physiological ecology of serpentine barrens of eastern North America. In: Anderson RC, Fralish JS, Baskin JM (eds) Savannas, barrens, and rock outcrop plant communities of North America. Cambridge University Press, New York, pp 67–82

    Chapter  Google Scholar 

  • Tzonev R, Pavlova D, Sánchez-Mata D, de la Fuente V (2013) Contribution to the knowledge of Bulgarian serpentine grasslands an their relationships with Balkan serpentine taxa. Plant Biosyst 147:955–969

    Article  Google Scholar 

  • Van der Ent A, Jaffré T, L’Huillier L, Gibson N, Reeves RD (2015) The flora of ultramafic soils in the Australia-Pacific Region: state of knowledge and research priorities. Aust J Bot 63:173–190

    Article  Google Scholar 

  • Vasié O, Diklié N (2001) The flora and vegetation on serpentinites in Serbia—a review. Bocconea 13:151–164

    Google Scholar 

  • Vassilev K, Pedashenko H, Nikolov SC, Apostolova I, Dengler J (2011) Effect of land abandonment on the vegetation of upland semi-natural grasslands in the Western Balkan Mts., Bulgaria. Plant Biosyst 145:654–665

    Article  Google Scholar 

  • Verger J-P (1992) Vegetation and soils in the Valle d’Aosta (Italy). In: Baker AJM, Proctor J, Reeves RD (eds) Vegetation of ultramafic (Serpentine) soils. Intercept, Hampshire, pp 175–195

    Google Scholar 

  • Vicherek J (1970) Ein Beitrag zur Syntaxonomie der Felsspalten- und Rissenpflanzengesellschaften auf Serpentin in Mitteleuropa. Folia Fac Sci Nat Univ Purkynianae Brun Biol 26:83–89

    Google Scholar 

  • Vit P, Wolfova K, Urfus T, Tajek P, Suda J (2014) Interspecific hybridization between rare and common plant congenersinferred from genome size data: assessing the threat to the Czech serpentine endemic Cerastium alsinifolium. Preslia 86:95–117

    Google Scholar 

  • Watson HC (1860) Part first of a supplement to the Cybele Britannica. London

  • Yurtsev BA, Alekseeva-Popova NV, Kataeva MN (2001) Species diversity of local floras of the Polar Urals under contrasting geochemical conditions. In: Veselov AE (ed) Biodiversity in Northern Europe: Abstract International Conference, Petrozavodsk, pp 204–205

  • Yurtzev BA, Alexeeva-Popova NV, Drozdova IV, Kataeva MN (2004) Characteristics of Vegetation and Soils of Polar Urals under Geochemical Conditions: 1. Calciphyte and Acidophyte Communities. Bot Z 89:28–41 (In Russian)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the two anonymous reviewers for their useful comments on the manuscript. The work of AT and AP is financially supported by RFBR (Grant 16-04-01346) and the Ministry of Education and Science of the Russian Federation Agreement no. 02.A03.21.0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anzhelika Teptina.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teptina, A., Paukov, A. & Rajakaruna, N. Ultramafic vegetation and soils in the circumboreal region of the Northern Hemisphere. Ecol Res 33, 609–628 (2018). https://doi.org/10.1007/s11284-018-1577-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-018-1577-1

Keywords

Navigation