Advertisement

Ecological Research

, Volume 33, Issue 1, pp 19–34 | Cite as

The International Long-Term Ecological Research–East Asia–Pacific Regional Network (ILTER-EAP): history, development, and perspectives

  • Eun-Shik Kim
  • Yongyut Trisurat
  • Hiroyuki Muraoka
  • Hideaki Shibata
  • Victor Amoroso
  • Bazartseren Boldgiv
  • Kazuhiko Hoshizaki
  • Abd Rahman Kassim
  • Young-Sun Kim
  • Hong Quan Nguyen
  • Nobuhito Ohte
  • Perry S. Ong
  • Chiao-Ping Wang
Special Feature: Current Topics in Ecology Biodiversity and Its Ecological Functions in East-Asia and Pacific Region: Status and Challenges

Abstract

There are growing needs to broaden and deepen our multi-faceted understanding of the ecosystems, and the networks of Long-Term Ecological Research (LTER) can play significant roles in fostering and applying ecosystem studies at regional and global scales. The International LTER Network (ILTER) is organized as a global network of field research sites and scientists to address current ecological issues such as biodiversity loss and ecosystem degradation within a globally changing environment. The ILTER East Asia–Pacific Regional Network (ILTER-EAP) is one of the four constituent ILTER regional networks. Since 1995, ILTER-EAP has been developed to promote data sharing, research collaborations and capability building in the science and to bridge gaps between societal needs and scientific imperatives on concerns in the Asia–Pacific Region. Currently, ILTER-EAP comprises nine formal ILTER members and two associate networks. Their activities involve long-term and multiple-site observations of structural, functional and developmental aspects of ecosystems, data sharing, and bridging society and ecological science. This paper presents a review of the activities of ILTER-EAP, focusing on its: (1) vision and the development following its inception, (2) scientific activities and major outputs related to selected thematic areas, (3) contributions from ILTER-EAP to the international initiatives, and (4) future challenges and opportunities relating to its development and role in facilitating regional and global research collaborations. Accordingly, regional research questions were identified that could be most effectively addressed by opening up a common research platform, integrated data management system and the network science, which is open to all interested parties.

Keywords

Biodiversity Carbon cycle Ecohydrology Global in situ network Nitrogen cycle 

Notes

Acknowledgements

The authors thank Nguyen Kim Loi (Nong Lam University) and Thu Huyen Do (Vietnam National University) for organizing the 11th biennial conference of ILTER-EAP which facilitated the discussion among the networks, Hen-biau King (TERN-Taiwan, former Chair of ILTER and ILTER-EAP) for suggesting the way forward; Yiching Lin and Chau-chin Lin (TERN-Taiwan), Tsutom Hiura (JaLTER), Xiubo Yu (CERN), Michael Liddel (TERN-Australia) for their valuable inputs and comments on a draft of this paper; the ILTER-DEIMS developing team for their contributions to geographical and thematic analyses; and Herbert Haubold (ILTER) for his careful reading of the draft of this manuscript. We thank Atsushi Kume, Masahiro Nakaoka and Yuko Aoshima from Ecological Research for giving us the opportunity to present this paper. We thank the editor and two anonymous reviewers for their valuable comments on our manuscript. Last, this review paper would not have been possible without previous and on-going research conducted by scientists within ILTER-EAP and its member networks.

Supplementary material

11284_2017_1523_MOESM1_ESM.pdf (253 kb)
Supplementary material 1 (PDF 253 kb)

References

  1. Adger WN (2000) Social and ecological resilience: are they related? Prog Hum Geogr 24:347–374CrossRefGoogle Scholar
  2. Anderson P, Elmqvist T (2012) Urban ecological and social-ecological research in the City of Cape Town: insights emerging from an urban ecology CityLab. Ecol Soc 17:23. doi: 10.5751/ES-05076-170423 Google Scholar
  3. Beringer J, Hutley LB, McHugh I et al (2016) An introduction to the Australian and New Zealand flux tower network—OzFlux. Biogeosciences 13:5895–5916. doi: 10.5194/bg-13-5895-2016 CrossRefGoogle Scholar
  4. CEPF (2017) List of biodiversity hotspots in the Asia Pacific. http://www.cepf.net/resources/hotspots/Asia-Pacific/Pages/default.aspx. Accessed 7 April 2017
  5. Chang CT, Hamburg SP, Hwong JL, Lin NH, Hsueh ML, Chen MC, Lin TC (2013) Impacts of tropical cyclones on hydrochemistry of a subtropical forest. Hydrol Earth Syst Sci 17:3815–3826CrossRefGoogle Scholar
  6. Chang CT, Wang LJ, Huang JC, Liu CP, Wang CP, Lin NH, Wand L, Lind TC (2017) Precipitation controls on nutrients in subtropical and tropical forests and the implications under changing climate. Adv Water Resour 103:44–50CrossRefGoogle Scholar
  7. Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York, p 436Google Scholar
  8. Chen I-C, Hsieh C-h, Kondoh M, Lin H-J, Miki T, Nakamura M, Ohgushi T, Urabe J, Yoshida T (2017) Filling the gaps in ecological studies of socio-ecological systems. Ecol Res 32(6):873–885.  https://doi.org/10.1007/s11284-017-1521-9 CrossRefGoogle Scholar
  9. Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013) Experimental warming studies on tree species and forest ecosystems: a literature review. J Plant Res 1246:447–460CrossRefGoogle Scholar
  10. Clark WC, Dickson NM (2003) Sustainability science: the emerging research program. Proc Natl Acad Sci USA 100:8059–8061CrossRefPubMedPubMedCentralGoogle Scholar
  11. Collins SL, Carpenter SR, Swinton SM, Orenstein DE, Childers DL, Gragson TL, Grimm NB, Grove JM, Harlan SL, Kaye JP, Knapp AK, Kofinas GP, Magnuson JJ, McDowell WH, Melack JM, Ogden LA, Robertson GP, Smith MD, Whitmer AC (2011) An integrated conceptual framework for long-term social–ecological research. Front Ecol Environ 9:351–357CrossRefGoogle Scholar
  12. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, and Wehner M (2013) Long-term climate change: projections, commitments and Irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1029–1136Google Scholar
  13. Dearing J, Acma B, Bub S, Chambers F, Chen X, Cooper J, Crook D, Dong X, Dotterweich M, Edwards M, Foster T, Gaillard MJ, Galop D, Gell P, Gil A, Jeffers E, Jones R, Anupama K, Langdon P, Marchant R, Mazier F, McLean C, Nunes L, Sukumar R, Suryaprakash I, Umer M, Yang X, Wang R, Zhang K (2015) Social-ecological systems in the Anthropocene: the need for integrating social and biophysical records at regional scales. Anthr Rev 2:220–246CrossRefGoogle Scholar
  14. Enoki T, Nakashhizuka T, Nakano S-I, Miki T, Lin Y-P, Nakaoka M, Mizumachi E, Shibata H (2014) Progress in the 21st century: a roadmap for the Ecological Society of Japan. Ecol Res 29:357–368. doi: 10.1007/s128-014-1140-7 CrossRefGoogle Scholar
  15. Fang Y, Koba K, Makabe A, Takahashi C, Zhu W, Hayashi T, Hokari AA, Urakawa R, Bai E, Houltone BZ, Xi D, Zhang S, Matsushita K, Tu Y, Liu D, Zhu F, Wang Z, Zhou G, Chen D, Makita T, Toda H, Liu X, Chen Q, Zhang D, Li Y, Yoh M (2015) Microbial denitrification dominates nitrate losses from forest ecosystems. PNAS 112:1470–1474CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fest BJ, Livesley SJ, Drösler M, van Gorsel E, Arndt SK (2009) Soil-atmosphere greenhouse gas exchange in a cool, temperate Eucalyptus delegatensis forest in south-eastern Australia. Agric For Meteorol 149:393–406CrossRefGoogle Scholar
  17. Fest BJ, Wardlaw T, Livesley SJ, Duff TJ, Arndt S (2015) Changes in soil moisture drive soil methane uptake along a fire regeneration chronosequences in a eucalypt forest landscape. Glob Change Biol 21:4250–4264. doi: 10.1111/gcb.13003 CrossRefGoogle Scholar
  18. Folke C, Biggs R, Norström AV, Reyers B, Rockström J (2016) Social-ecological resilience and biosphere-based sustainability science. Ecol Soc 21:41CrossRefGoogle Scholar
  19. Galindon JM, Pasion B, Tongco MD, Fidelino J, Duya MR, Ong P (2018) Plant diversity patterns in remnant forests and exotic tree species-based reforestation in active limestones quarries in the Luzon and Mindanao biogeographic sub-regions in the Philippines. Ecol Res 33.  https://doi.org/10.1007/s11284-017-1533-5  
  20. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC et al (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  21. Goulden CE, Mead J, Horwitz R, Goulden M, Nandintsetseg B, McCormick S, Boldgiv B, Petraitis PS (2016) Interviews of Mongolian herders and high resolution precipitation data reveal an increase in short heavy rains and thunderstorm activity in semi-arid Mongolia. Clim Change 136:281–295CrossRefGoogle Scholar
  22. Haase D, Frantzeskaki N, Elmqvist T (2014) Ecosystem services in urban landscapes: practical applications and governance implications. Ambio 43:407–412CrossRefPubMedPubMedCentralGoogle Scholar
  23. Haberl H, Winiwarter V, Andersson K, Ayres RU, Boone C, Castillo A, Cunfer G, Fischer-Kowalski M, Freudenburg WR, Furman E, Kaufmann R, Krausmann F, Langthaler E, Lotze-Campen H, Mirtl M, Redman CL, Reenberg A, Wardell A, Warr B, Zechmeister H (2006) From LTER to LTSER: conceptualizing the socioeconomic dimension of long-term socioecological research. Ecol Soc 11:13CrossRefGoogle Scholar
  24. Haberl H, Fischer-Kowalski M, Krausmann FK, Winiwarter V (eds) (2016) Social ecology. Society-nature relations across time and space. Springer, BaselGoogle Scholar
  25. Hannah DM, Wood PJ, Sadler JP (2004) Ecohydrology and hydroecology: a ‘new paradigm’. Hydrol Process 18:3439–3445CrossRefGoogle Scholar
  26. Hoshizaki K, Niiyama K, Kimura K, Yamashita T, Bekku Y, Okuda T, Quah ES, Supardi NMN (2004) Temporal and spatial variation of forest biomass in relation to the stand dynamics in a lowland tropical rain forest, Malaysia. Ecol Res 19:357–363CrossRefGoogle Scholar
  27. International Long-Term Ecological Research Network (2006) International Long-Term Ecological Research Network: Strategic Plan. International Long-Term Ecological Research Network. http://www.lter-europe.net/document-archive/central/ECOLEC-D-08-00262.pdf/view
  28. IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker T, Qin D, Plattner G-K, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds). Cambridge University Press, Cambridge, pp 1029–1136Google Scholar
  29. Ishihara MI, Suzuki SN, Nakamura M, Enoki T, Fujiwara A, Hiura T, Homma K, Hoshino D, Hoshizaki K, Ida H, Ishida K, Itoh A, Kaneko T, Kubota K, Kuraji K, Kuramoto S, Makiat A, Masaki T, Namikawa K, Niiyama K, Noguchi M, Nomiya J, Ohkubo T, Saito S, Sakai T, Sakimoto M, Sakio H, Shibano H, Sugita H, Suzuki M, Takashima A, Tanaka N, Tashiro N, Tokuchi N, Yakushima Forest Environment Conservation Center, Yoshida T, Yoshida Y (2011) Forest stand structure, composition, and dynamics in 34 sites over Japan. Ecol Res 26:1007–1008. doi: 10.1007/s11284-011-0847-y CrossRefGoogle Scholar
  30. Ito A (2008) The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using AsiaFlux data. Agric For Meteorol 148:738–747CrossRefGoogle Scholar
  31. Karan M, Kiddel M, Prober SM, Arndt S, Beringer J, Boer M, Cleverly J, Eamus D, Grace P, van Gorsel E, Hero J-M, Hutley L, Macfarlane C, Metcalfe D, Meyer W, Pendall E, Sebastian A, Wardlaw T (2016) The Australian SuperSite Network: a continental, long-term terrestrial ecosystem observatory. Sci Total Environ 568:1263–1274CrossRefPubMedGoogle Scholar
  32. Kates RW, Clark WC, Corell R, Hall JM, Jaeger CC, Lowe I, McCarthy JJ, Schellnhuber HJ, Bolin B, Dickson NM, Faucheux S, Gallopin GC, Grubler A, Huntley B, Jager J, Jodha NS, Kasperson RE, Mabogunje A, Matson P, Mooney H, Moore B III, O’Riordan T, Svedin U (2001) Sustainability science. Science 292:641–642CrossRefPubMedGoogle Scholar
  33. Katsuyama M, Yoshioka T, Konohira E (2015) Spatial distribution of oxygen-18 and deuterium in stream waters across the Japanese archipelago. Hydrol Earth Sci 19:1577–1588CrossRefGoogle Scholar
  34. Kim E-S (2012) International Long-Term Ecological Research Network activities in the east Asia–Pacific region and biodiversity monitoring. In: Nakano S, Yahara T, Nakashizuka T (eds) The biodiversity observation network in the Asia–Pacific region: toward further development of monitoring, ecological research monographs. Springer, Tokyo, Japan, pp 111–132Google Scholar
  35. Kim E-S, Kim Y-S (2011) Current status of Korea long-term ecological research (KLTER) network activities compared with the framework activities of the long-term ecological research (LTER) networks of the United States and China. J Ecol Field Biol 34:19–29CrossRefGoogle Scholar
  36. Kondo M, Saitoh TM, Sato H, Ichii K (2017) Comprehensive synthesis of spatial variability in carbon flux across monsoon Asian forests. Agric For Meteorol 232:623–634. doi: 10.1016/j.agrformet.2016.10.020 CrossRefGoogle Scholar
  37. Kosugi Y, Takanashi S, Tani M, Ohkubo S, Matsuo N, Itoh M, Noguchi S, Nik AR (2012) Effect of inter-annual climate variability on evapotranspiration and canopy CO2 exchange of a tropical rainforest in Peninsular Malaysia. J Forest Res 17:227–240CrossRefGoogle Scholar
  38. Kundzewicz ZW (2002) Ecohydrology—seeking consensus on interpretation of the notion. Hydrol Sci J 47:799–804CrossRefGoogle Scholar
  39. Kuribayashi M, Noh NJ, Saitoh TM, Ito A, Wakazuki Y, Muraoka H (2017) Current and future carbon budget at Takayama site, Japan, evaluated by a regional climate model and a process-based terrestrial ecosystem model. Int J Biometeorol. doi: 10.1007/s00484-016-1278-9 PubMedGoogle Scholar
  40. LaManna JA, Mangan SA, Alonso A, Bourg NA, Brockelman WY, Bunyavejchewin S, Chang LW, Chiang JM, Chuyong GB, Clay K, Condit R, Cordell S, Davies SJ, Furniss TJ, Giardina CP, Gunatilleke IAUN, Gunatilleke CVS, He F, Howe RW, Stephen P, Hubbell SP, Hsieh CF, Inman-Narahari FM, Janík D, Johnson DJ, Kenfack D, Korte L, Král K, Larson AJ, Lutz JA, McMahon SM, McShea WJ, Memiaghe HR, Nathalang A, Novotny V, Ong PS, Orwig DA, Ostertag R, Parker GG, Phillips RP, Sack L, Sun IF, Tello JS, Thomas DW, Turner BL, Vela Díaz DM, Vrška T, Weiblen GD, Wolf A, Yap S, Myers JA (2017) Plant diversity increases with the strength of negative density dependence at the global scale. Science 356:1389–1392. doi: 10.1126/science.aam5678 CrossRefPubMedGoogle Scholar
  41. Li S, Yi G, Yu X, He H, Guo X (2015) A brief introduction to Chinese ecosystem research network (CERN). J Resour Ecol 6:192–196CrossRefGoogle Scholar
  42. Liancourt P, Boldgiv B, Song DS, Spence LA, Helliker BR, Petraitis PS, Casper BB (2015) Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe. Glob Chang Biol 21:3489–3498CrossRefPubMedGoogle Scholar
  43. Lin CC, Mai GS, Lu SS (2016) Federation of ecological data repository of EAP-ILTER. Taiwan J For Sci 31(4):337–342Google Scholar
  44. Lindenmayer D, Burns E, Thurgate N, Lowe A (eds) (2014) Biodiversity and environmental change. CSIRO Publishing, Melbourne, AustraliaGoogle Scholar
  45. Mai GS, Wang YH, Hsia YJ, Lu SS, Lin CC (2011) Linked open data of ecology (LODE): a new approach of ecological data sharing. Taiwan J For Sci 26:371–378Google Scholar
  46. Makino M, Matsuda H (2011) Chapter 19: ecosystem-based management in the Asia–Pacific region. In: Ommer RE, Perry RI, Cochrane K, Cury P (eds) Blackwell world fisheries: a social-ecological analysis. Wiley - Blackwell Oxford, UK, pp 322–333Google Scholar
  47. Marcotullio PJ (2003) Globalisation, urban form and environmental conditions in Asia–Pacific cities. Urban Stud 40:219–247CrossRefGoogle Scholar
  48. Maxwell SL, Fuller RA, Brooks TM, Watson JE (2016) Biodiversity: the ravages of guns, nets and bulldozers. Nature 536:143–145CrossRefPubMedGoogle Scholar
  49. Millennium Ecosystem Assessment Board (2005) Ecosystems and human well-being: current state and trends, vol 1. Island Press, Washington D.C.Google Scholar
  50. Mittermeier RA, Robles-Gil P, Mittermeier CG (eds) (1997) Megadiversity. Earth’s biologically wealthiest nations. CEMEX/Agrupaciaon Sierra Madre, Mexico CityGoogle Scholar
  51. Mittermeierm RA, Turner WR, Larsen FW, Brooks TM, Gascon C (2011) Global biodiversity conservation: the critical role of hotspots. In: Zachos FE, Habel JC (eds) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer, BerlinGoogle Scholar
  52. Muraoka H (2015) (Editorial) Interdisciplinary approach for spatial and temporal dynamics of carbon cycle processes in terrestrial ecosystems: challenges and networking at the Takayama site on a mountainous landscape of Japan. Special Virtual Issue “Long-term and multidisciplinary research of the forest carbon cycle at the Takayama site, Japan”: Joint contents from the Journal of Plant Research and Ecological Research. pp 1–3Google Scholar
  53. Muraoka H, Koizumi H (2009) Satellite ecology (SATECO)-linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function. J Plant Res 122:3–20CrossRefPubMedGoogle Scholar
  54. Muraoka H, Saigusa N, Nasahara KN, Noda H, Yoshino J, Saitoh TM, Nagai S, Murayama S, Koizumi H (2010) Effects of seasonal and interannual variation in leaf photosynthesis and canopy leaf area index on gross primary production in a cool-temperate deciduous broadleaf forest in Takayama, Japan. J Plant Res 123:563–576. doi: 10.1007/s10265-009-0270-4 CrossRefPubMedGoogle Scholar
  55. Muraoka H, Ishii R, Nagai S, Suzuki R, Motohka T, Noda H, Hirota M, Nasahara KN, Oguma H, Muramatsu K (2012) Linking remote sensing and in situ ecosystem/biodiversity observations by Satellite Ecology. In: Nakano S-I, Tetsukazu Y, Tohru N (eds) The biodiversity observation network in the Asia–Pacific region: toward further development of monitoring. Ecological research monographs. Springer, Tokyo, Japan, pp 277–308CrossRefGoogle Scholar
  56. Muraoka H, Noda HM, Nagai S, Motohka T, Saitoh TM, Nasahara KN, Saigusa N (2013) Spectral vegetation indices as the indicator of canopy photosynthetic productivity in a deciduous broadleaf forest. J Plant Ecol 6:393–407. doi: 10.1093/jpe/rts037 CrossRefGoogle Scholar
  57. Myers N (2003) Biodiversity hotspots revisited. Bioscience 53:916–917CrossRefGoogle Scholar
  58. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  59. Nagai S, Nasahara KN (2017) Seasonal leaf phenology data for 12 tree species in a cool-temperate deciduous broadleaved forest in Japan from 2005 to 2014. Ecol Res 32:107.  https://doi.org/10.1007/s11284-017-1439-2 CrossRefGoogle Scholar
  60. Nakamura M, Muller O, Tayanagi S, Nakaji T, Hiura T (2010) Experimental branch warming alters tall tree leaf phenology and acorn production. Agric For Meteorol 150:1026–1029CrossRefGoogle Scholar
  61. Nakaoka M, Sudo K, Namba M, Shibata H, Nakamura F, Ishikawa S, Makino M, Yamano H, Matsuzaki SS, Yamakita T, Yu X, Hou X, Li X, Brodie J, Kanemoto K, Moran D, Verones F (2018) TSUNAGARI: a new interdisciplinary and transdisciplinary study toward conservation and sustainable use of biodiversity and ecosystem services. Ecol Res 33.  https://doi.org/10.1007/s11284-017-1534-4
  62. Nasahara KN, Nagai S (2015) Review: development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN). Ecol Res 30:211–223. doi: 10.1007/s11284-014-1239-x CrossRefGoogle Scholar
  63. Nguyen HQ, To QT, Phan DD, Nguyen LP, Tran THA, Ngo XQ, Dao PQ, Le PQ, Hanington P, Sea WB (2018) Conservation of the Mekong Delta wetlands through hydrological management. Ecol Res 33.  https://doi.org/10.1007/s11284-017-1545-1
  64. Niiyama K, Kajimoto T, Matsuura Y, Yamashita T, Matsuo N, Yashiro Y, Rippin A, Kassim AR, Noor NS (2010) Estimation of root biomass based on excavation of individual root systems in a primary dipterocarp forest in Pasoh Forest Reserve, Peninsular Malaysia. J Trop Ecol 26:271–284CrossRefGoogle Scholar
  65. Noda HM, Motohka T, Murakami K, Muraoka H, Nasahara KN (2014) Reflectance and transmittance spectra of leaves and shoots of 22 vascular plant species and reflectance spectra of trunks and branches of 12 tree species in Japan. Ecol Res 29:111. doi: 10.1007/s11284-013-1096-z CrossRefGoogle Scholar
  66. Nottrott RW, Franklin JR, Vande Castle JR (eds) (1994) International networking in long-term ecological research. In: Proceedings of an international summit, 23–24 September, 1993, Estes Park, Colorado. LTER Network Office, University of Washington, Seattle, Washington, USAGoogle Scholar
  67. Ohte N, Nakaoka M, Shibata H (2012) ILTER and JaLTER: Their Missions and Linkage to Database Development in the Asia-Pacific Region. In: Nakano S, Yahara T, Nakashizuka T (eds) The biodiversity observation network in the Asia–Pacific region: toward further development of monitoring, ecological research monographs. Springer, Tokyo, pp 205–215.  https://doi.org/10.1007/978-4-431-54032-8_15
  68. Ohtsuka T, Saigusa N, Koziumi H (2009) On linking multiyear biometric measurements of tree growth with eddy covariance-based net ecosystem production. Glob Change Biol 15:1015–1024. doi: 10.1111/j.1365-2486.2008.01800.x CrossRefGoogle Scholar
  69. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938CrossRefGoogle Scholar
  70. Pickett STA, Cadenasso ML, Childers DL, McDonnell MJ, Zhou W (2016) Evolution and future of urban ecological science: ecology in, of, and for the city. Ecosyst Health Sustain 2:01229CrossRefGoogle Scholar
  71. Porporato A, Rodriguez-Iturbe I (2002) Ecohydrology-a challenging multidisciplinary research perspective/ecohydrologie: une perspective stimulante de recherche multidisciplinaire. Hydrol Sci J 47:811–821. doi: 10.1080/02626660209492985 CrossRefGoogle Scholar
  72. Rockström J, Steffen W, Noone K et al (2009) A safe operating space for humanity. Nature 461:472–475CrossRefPubMedGoogle Scholar
  73. Saigusa N, Yamamoto S, Murayama S, Kondo H (2005) Interannual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements. Agric For Meteorol 134:4–16CrossRefGoogle Scholar
  74. Saigusa N, Ichii K, Murakami H, Hirata R, Asanuma J, Den H, Han S-J, Ide R, Li S-G, Ohta T, Sasai T, Wang S-Q, Yu G-R (2010) Impact of meteorological anomalies in the 2003 summer on Gross Primary Productivity in East Asia. Biogeosciences 7:641–655CrossRefGoogle Scholar
  75. Secades C, O’Connor B, Brown C, Walpole M (2014) Earth observation for biodiversity monitoring: a review of current approaches and future opportunities for tracking progress toward the Aichi Biodiversity Targets. Secretariat of the Convention on Biological Diversity, MontrealGoogle Scholar
  76. Sharkhuu A, Plante AF, Enkhmandal O, Casper BB, Helliker BR, Boldgiv B, Petraitis PS (2013) Effects of open-top passive warming chambers on soil respiration in the semi-arid steppe to taiga forest transition zone in Northern Mongolia. Biogeochemistry 115:333–348CrossRefGoogle Scholar
  77. Sharkhuu A, Plante AF, Enkhmandal O, Gonneau C, Casper BB, Boldgiv B, Petraitis PS (2016) Soil and ecosystem respiration responses to grazing, watering and experimental warming chamber treatments across topographical gradients in northern Mongolia. Geoderma 269:91–98CrossRefPubMedPubMedCentralGoogle Scholar
  78. Shibata H, Branquinho C, McDowell WH, Mitchell MJ, Monteith DT, Tang J, Arvola L, Cruz C, Cusack D, Halada L, Kopáček J, Máguas C, Sajidu S, Schubert H, Tokuchi N, Záhora J (2015) Consequence of altered nitrogen cycles in the coupled human and ecological system under changing climate: the need for long-term and site-based research. Ambio 44:178–193CrossRefPubMedGoogle Scholar
  79. Sodhi NS, Koh LP, Brook BW, Ng PKL (2004) Southeast Asian: an impending disaster. Trends Ecol Evol 19:654–660CrossRefPubMedGoogle Scholar
  80. Steffen W, Richardson K, Rockström J et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 348:1217PubMedGoogle Scholar
  81. Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, Van Grinsven H, Grizzetti B (2011) The European nitrogen assessment. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  82. Takamura N, Nakagawa M (2012) Phytoplankton species abundance in Lake Kasumigaura (Japan) monitored monthly or biweekly since 1978. Ecol Res 27:837. doi: 10.1007/s11284-012-0971-3 CrossRefGoogle Scholar
  83. Takeuchi K, Ichikawa K, Elmqvist T (2016) Satoyama landscape as social–ecological system: historical changes and future perspective. Curr Opin Environ Sustain 19:30–39CrossRefGoogle Scholar
  84. Takyu M, Kubota Y, Aiba SI, Seino T, Nishimura T (2005) Pattern of changes in species diversity, structure and dynamics of forest ecosystems along latitudinal gradients in East Asia. Ecol Res 20:287–296CrossRefGoogle Scholar
  85. Tangtham N (1994) The hydrological roles of forests in Thailand. TDRI Q Rev 9:27–32Google Scholar
  86. Tani M, Fujimoto M, Katsuyama M, Kojima N, Hosoda I, Kosugi K-I, Kosigi Y, Nakamu S (2012) Predicting the dependencies of rainfall-runoff responses on human forest disturbances with soil loss based on the runoff mechanisms in granite and sedimentary rock mountains. Hydrol Process 26:809–826CrossRefGoogle Scholar
  87. Trisurat Y, Duengkae P (2011) Consequences of land use change on bird distribution at Sakaerat Environmental Research Station. J Ecol Field Biol 34:203–214Google Scholar
  88. Trisurat Y, Eiwpanich P, Kalliola R (2016) Integrating land use and climate change scenarios and models into assessment of forested watershed services in Southern Thailand. Environ Res 147:611–620CrossRefPubMedGoogle Scholar
  89. Trisurat Y, Aekakkararungroj A, Ma H, Johnston JM (2018) Basin-wide impacts of climate change on ecosystem services in the Lower Mekong Basin. Ecol Res 33.  https://doi.org/10.1007/s11284-017-1510-z
  90. Truong NCQ, Nguyen HQ, Kondoh A (2016) Land use and land cover changes and their effect on the flow regime in the upstream Dong Nai River Basin in Vietnam. In: International meeting on land use and emissions in South/Southeast Asia, Ho Chi Minh city, VietnamGoogle Scholar
  91. Tsunogai U, Komatsu DD, Ohyama T, Suzuki A, Nakagawa F, Noguchi I, Takagi K, Nomura M, Fukuzawa K, Shibata H (2014) Quantifying the effects of clear-cutting and strip-cutting on nitrate dynamics in a forested watershed using triple oxygen isotopes as tracers. Biogeoscience 11:5411–5424CrossRefGoogle Scholar
  92. UNEP (2016) GEO-6 Regional assessment for Asia and the Pacific. United Nations Environment Programme, NairobiGoogle Scholar
  93. Urakawa R, Ohte N, Shibata H, Tateno R, Hishi H, Fukushima K, Inagaki Y, Hirai K, Oda T, Oyanagi N, Nakata M, Toda H, Tanaka K, Fukuzawa F, Watanabe T, Tokuchi N, Nakaji T, Saigusa N, Yamao Y, Nakanishi A, Enoki T, Ugawa S, Hayakawa A, Kotani A, Kuroiwa M, Isobe K (2015) Biogeochemical nitrogen properties of forest soils in the Japanese archipelago. Ecol Res 30:1–2CrossRefGoogle Scholar
  94. Urakawa R, Ohte N, Shibata H, Isobe K, Tateno R, Oda T, Hishi T, Fukushima K, Inagaki Y, Hirai K, Oyanagi N, Nakata M, Toda H, Kenta T, Kuroiwa M, Watanabe T, Fukuzawa K, Tokuchi N, Ugawa S, Enoki T, Nakanishi A, Saigusa N, Yamao Y, Kotani A (2016) Factors contributing to soil nitrogen mineralization and nitrification rates of forest soils in the Japanese archipelago. For Ecol Manag 61:382–396CrossRefGoogle Scholar
  95. US-LTER (2007) The decadal plan for LTER: integrative science for society and the environment. LTER Network Office Publication Series No. 24, Albuquerque, New Mexico, pp 154. Date assessedGoogle Scholar
  96. Vanderbilt KL, Lin CC, Lu SS, Kassim AR, He H, Guo X, San Gil I, Blankman D, Porter JH (2015) Fostering ecological data sharing: collaborations in the International Long Term Ecological Research Network. Ecosphere 6:204CrossRefGoogle Scholar
  97. Vanderbilt K, Porter JH, Lu SS, Bertrand N, Blankman D, Guo X, He H, Henshaw D, Jeong K, Kim ES, Lin CC, O’Brien M, Osawa T, Tuama ÈÒ, Su W, Yang H (2017) A prototype system for multilingual data discovery of International Lon-Term Ecological Research (ILTER) Network data. Ecol Inf 40:93–101CrossRefGoogle Scholar
  98. Vihervaara P, D’Amato D, Forsius M, Angelstam P, Baessler C, Balvanera P, Boldgiv B, Bourgeron P, Dick J, Kanka R, Klotz S, Maass M, Melecis V, Petrík P, Shibata H, Tang J, Thompson J, Zacharias S (2013) Using long-term ecosystem service and biodiversity data to study the impacts and adaptation options in response to climate change: insights from the global ILTER sites network. Curr Opin Environ Sustain 5:53–66CrossRefGoogle Scholar
  99. Walker A (2002) Forests and water in northern Thailand. Chiangmai University J 1:215–244Google Scholar
  100. Willing R, Walker LR (2016) Long-term ecological research. Changing the nature of scientists, vol 464. Oxford University Express, OxfordGoogle Scholar
  101. Worldometers (2017) Countries in the world by population. http://www.worldometers.info/worldpopulation/population-by-country/. Accessed 7 April 2017
  102. Yamaguchi DP, Nakaji T, Hiura T, Hikosaka K (2016) Effects of seasonal change and experimental warming on the temperature dependence of photosynthesis in the canopy leaves of Quercus serrate. Tree Physiol. doi: 10.1093/treephys/tpw021 PubMedGoogle Scholar
  103. Yli-Pelkonen V, Niemelä J (2005) Linking ecological and social systems in cities: urban planning in Finland as a case. Biodivers Conserv 14:1947–1967CrossRefGoogle Scholar
  104. Yu G, Zhang LM, Sun XM (2014) Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX). Prog Geogr 33:903–917Google Scholar
  105. Yu G, Ren W, Zhi C, Zhang L, Qiufeng Wang, Wen X, Nianpeng HE, Zhang L, Fang H, Zhu X, Gao Y, Xiaomin S (2016a) Construction and progress of Chinese terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation. J Geogr Sci 26:803–826CrossRefGoogle Scholar
  106. Yu G, Wen XF, X-Min S, Tanner BD, Lee X, Chen JY (2016b) Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agric For Meteorol 137:125–137CrossRefGoogle Scholar
  107. Zalewski M (2015) Ecohydrology and hydrologic engineering: regulation of hydrology-biota interactions for sustainability. J Hydrol Eng 20:A4014012CrossRefGoogle Scholar
  108. Zalewski M, Janauer G, Jolankai G (1997) Ecohydrology. A new paradigm for the sustainable use of aquatic resources. UNESCO, ParisGoogle Scholar
  109. Zalewski M, McClain M, Eslamian S (2016) Ecohydrology—the background for the integrative sustainability science. Ecohydrol Hydrobiol 16:71–73CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2017

Authors and Affiliations

  • Eun-Shik Kim
    • 1
  • Yongyut Trisurat
    • 2
  • Hiroyuki Muraoka
    • 3
  • Hideaki Shibata
    • 4
  • Victor Amoroso
    • 5
  • Bazartseren Boldgiv
    • 6
    • 7
  • Kazuhiko Hoshizaki
    • 8
  • Abd Rahman Kassim
    • 9
  • Young-Sun Kim
    • 1
  • Hong Quan Nguyen
    • 10
  • Nobuhito Ohte
    • 11
  • Perry S. Ong
    • 12
  • Chiao-Ping Wang
    • 13
  1. 1.Department of Forestry, Environment, and SystemsKookmin UniversitySeoulKorea
  2. 2.Department of Forest Biology, Faculty of ForestryKasetsart UniversityBangkokThailand
  3. 3.River Basin Research CenterGifu UniversityGifuJapan
  4. 4.Field Science Center for Northern BiosphereHokkaido UniversitySapporoJapan
  5. 5.Center for Biodiversity Research and Extension in Mindanao (CEBREM), Central Mindanao University (CMU)MusuanPhilippines
  6. 6.Ecology Group, Department of Biology, School of Arts and SciencesNational University of MongoliaUlaanbaatarMongolia
  7. 7.Academy of Natural Sciences of Drexel UniversityPhiladelphiaUSA
  8. 8.Department of Biological EnvironmentAkita Prefectural UniversityAkitaJapan
  9. 9.Forest Research Institute Malaysia (FRIM)KepongMalaysia
  10. 10.Center of Water Management and Climate Change, Vietnam National UniversityHo Chi Minh CityVietnam
  11. 11.Biosphere Informatics Laboratory, Department of Social InformaticsKyoto UniversityKyotoJapan
  12. 12.Biodiversity Research Laboratory, Institute of Biology, College of ScienceUniversity of the Philippines DilimanQuezon CityPhilippines
  13. 13.Division of SilvicultureTaiwan Forest Research InstituteTaipeiTaiwan

Personalised recommendations