Ecological Research

, Volume 32, Issue 6, pp 961–969 | Cite as

Characterizing vertical migration of Microcystis aeruginosa and conditions for algal bloom development based on a light-driven migration model

  • Bo Yao
  • Qingquan Liu
  • Yong Gao
  • Zhixian Cao
Original Article


Light-driven vertical migration is critical in dense aggregation of Microcystis aeruginosa during algal blooms under reduced turbulence conditions in natural water bodies. This study examined the vertical migration characteristics of Microcystis aeruginosa in calm water based on a colony migration model with consideration of cell density change, and demonstrated the effects of mucilage fraction, colony size, irradiance intensity, and water turbidity. The results suggest that colonies with larger radii and under higher irradiance usually had a larger daily averaged retention time at the water surface (DRT). In addition to colony size, mucilage was found to be important in changing the vertical migration behavior of Microcystis colonies, in which increasing mucilage volume fraction can increase the migrating velocity of the colony as well as the length of time it remains at the water surface. Increase of light extinction also favors the aggregation of colonies at the surface. An approximate critical value of 2400 µmol photons m2 s−1 for maximum irradiance was found for persistent algal bloom development under the given simulation conditions. Extremely small colonies exposed to irradiance below the critical value were not likely to migrate to the water surface to form algal blooms. According to the DRT values, three regions with different ranges of irradiance and colony size were proposed as the critical conditions for algal bloom development. Rough comparisons to field observations suggested that these results were reasonable and meaningful, and have the potential to be applied in real cases following further validation by more detailed investigations.


Vertical migration Daily-averaged retention time Colony radius Irradiance Mucilage 



This work was financially supported by the Special Foundation (Class D) of the “Hundred Talents Program” of the Chinese Academy of Sciences (CAS), and by the National Natural Science Foundation of China (11202217).


  1. Aksnes DL, Egge JK (1991) A theoretical model for nutrient uptake in phytoplankton. Mar Ecol Prog Ser 70:65–72. doi: 10.3354/meps070065 CrossRefGoogle Scholar
  2. Bresciani M, Adamo M, De Carolis G, Matta E, Pasquariello G, Vaiciute D, Giardino C (2014) Monitoring blooms and surface accumulation of cyanobacteria in the Curonian Lagoon by combining MERIS and ASAR data. Remote Sens Environ 146:124–135. doi: 10.1016/j.rse.2013.07.040 CrossRefGoogle Scholar
  3. Chien YC, Wu SC, Chen WC, Chou CC (2013) Model simulation of diurnal vertical migration patterns of different-sized colonies of Microcystis employing a particle trajectory approach. Environ Eng Sci 30:179–186. doi: 10.1089/ees.2012.0318 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Costas E, Lopez-Rodas V, Toro FJ, Flores-Moya A (2008) The number of cells in colonies of the cyanobacterium Microcystis aeruginosa satisfies Benford’s law. Aquat Bot 89:341–343. doi: 10.1016/j.aquabot.2008.03.011 CrossRefGoogle Scholar
  5. Gao Y, Liu Q (2013) Dynamic criterion for the formation of surface water-blooms. Theor Appl Mech Lett 3:042003. doi: 10.1063/2.1304203 CrossRefGoogle Scholar
  6. Guven B, Howard A (2006) Modelling the growth and movement of cyanobacteria in river systems. Sci Total Environ 368:898–908. doi: 10.1016/j.scitotenv.2006.03.035 CrossRefPubMedGoogle Scholar
  7. Hajdu S, Hoglander H, Larsson U (2007) Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms. Harmful Algae 6:189–205. doi: 10.1016/j.hal.2006.07.006 CrossRefGoogle Scholar
  8. Hunter PD, Tyler AN, Willby NJ, Gilvear DJ (2008) The spatial dynamics of vertical migration by Microcystis aeruginosa in a eutrophic shallow lake: a case study using high spatial resolution time-series airborne remote sensing. Limnol Oceanogr 53:2391–2406. doi: 10.4319/lo.2008.53.6.2391 CrossRefGoogle Scholar
  9. Hutchinson GE (1967) A treatise on limnology. Introduction to lake biology and the limnoplankton, vol 2. Wiley, New YorkGoogle Scholar
  10. Kong F, Fao G (2005) Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes. Acta Ecol Sin/Shengtai Xuebao 25:589–595. doi: 10.3321/j.issn:1000-0933.2005.03.028 Google Scholar
  11. Kromkamp JC, Mur LR (1984) Buoyant density changes in the cyanobacterium Microcystis aeruginosa due to changes in the cellular carbohydrate content. FEMS Microbiol Lett 25:105–109. doi: 10.1111/j.1574-6968.1984.tb01384.x CrossRefGoogle Scholar
  12. Kromkamp JC, Walsby AE (1990) A computer model of buoyancy and vertical migration in cyanobacteria. J Plankton Res 12:161–183. doi: 10.1093/plankt/12.1.161 CrossRefGoogle Scholar
  13. Liu L, Liu D, Johnson DM, Yi Z, Huang Y (2012) Effects of vertical mixing on phytoplankton blooms in Xiangxi Bay of Three Gorges Reservoir: implications for management. Water Res 46:2121–2130. doi: 10.1016/j.watres.2012.01.029 CrossRefPubMedGoogle Scholar
  14. Naselli-Flores L, Barone R (2003) Steady-state assemblages in a Mediterranean hypertrophic reservoir. The role of Microcystis ecomorphological variability in maintaining an apparent equilibrium. Hydrobiologia 502:133–143. doi: 10.1023/B:Hydr.0000004276.11436.40 CrossRefGoogle Scholar
  15. Okada M, Aiba S (1986) Simulation of water-bloom in a eutrophic lake—IV Modeling the vertical migration in a population of Microcystis aeruginosa. Water Res 20:485–490. doi: 10.1016/0043-1354(86)90197-1 CrossRefGoogle Scholar
  16. Oliver RL, Ganf GG (2002) Fresh water blooms. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria—their diversity in time and space. Kluwer Academic, Dordrecht, pp 149–194Google Scholar
  17. Rabouille S, Thebault JM, Salencon MJ (2003) Simulation of carbon reserve dynamics in Microcystis and its influence on vertical migration with Yoyo model. C R Biol 326:349–361. doi: 10.1016/S1631-0691(03)00123-9 CrossRefPubMedGoogle Scholar
  18. Reynolds CS (2007) Variability in the provision and function of mucilage in phytoplankton: facultative responses to the environment. Hydrobiologia 578:37–45. doi: 10.1007/s10750-006-0431-6 CrossRefGoogle Scholar
  19. Reynolds CS, Walsby AE (1975) Water-blooms. Biol Rev Camb Philos Soc 50:437–481. doi: 10.1111/j.1469-185X.1975.tb01060.x CrossRefGoogle Scholar
  20. Reynolds CS, Jaworski GHM, Cmiech HA, Leedale GF (1981) On the annual cycle of the blue-green alga Microcystis aeruginosa Kutz emend. Elenkin. Philos Trans R Soc Lond B Biol Sci 293:419–477. doi: 10.1098/rstb.1981.0081 CrossRefGoogle Scholar
  21. Scheffer M, Rinaldi S, Gragnani A, Mur LR, van Nes EH (1997) On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78:272–282. doi: 10.2307/2265995 CrossRefGoogle Scholar
  22. Shigesada N, Okubo A (1981) Analysis of the self-shading effect on algal vertical distribution in natural waters. J Math Biol 12:311–326. doi: 10.1007/bf00276919 CrossRefGoogle Scholar
  23. Shikata T, Matsunaga S, Nishide H, Sakamoto S, Onistuka G, Yamaguchi M (2015) Diurnal vertical migration rhythms and their photoresponse in four phytoflagellates causing harmful algal blooms. Limnol Oceanogr 60:1251–1264. doi: 10.1002/lno.10095 CrossRefGoogle Scholar
  24. Visser P, Ibelings B, Van Der Veer B, Koedood J, Mur R (1996) Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer, the Netherlands. Freshw Biol 36:435–450. doi: 10.1046/j.1365-2427.1996.00093.x CrossRefGoogle Scholar
  25. Visser PM, Passarge J, Mur LR (1997) Modelling vertical migration of the cyanobacterium Microcystis. Hydrobiologia 349:99–109. doi: 10.1023/A:1003001713560 CrossRefGoogle Scholar
  26. Wallace BB, Bailey MC, Hamilton DP (2000) Simulation of vertical position of buoyancy regulating Microcystis aeruginosa in a shallow eutrophic lake. Aquat Sci 62:320–333. doi: 10.1007/PL00001338 CrossRefGoogle Scholar
  27. Walsby AE, Reynolds CS (1980) Sinking and floating. In: Morris I (ed) The physiological ecology of phytoplankton. Blackwell Scientific Publications, Oxford, pp 371–412Google Scholar
  28. Wang X, Qin B, Gao G, Paerl HW (2010) Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formation. J Plankton Res 32:457–470. doi: 10.1093/plankt/fbp143 CrossRefGoogle Scholar
  29. Wu XD, Kong FX (2009) Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom. Int Rev Hydrobiol 94:258–266. doi: 10.1002/iroh.200811141 CrossRefGoogle Scholar
  30. Wu XD, Kong FX (2010) Effect of excess light on colony size and photosynthetic quantum yield of Microcystis spp. during a summer bloom. J Freshw Ecol 25:507–516. doi: 10.1080/02705060.2010.9664399 CrossRefGoogle Scholar
  31. Wu T, Qin B, Brookes JD, Shi K, Zhu G, Zhu M, Yan W, Wang Z (2015) The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China. Sci Total Environ 518–519:24–30. doi: 10.1016/j.scitotenv.2015.02.090 CrossRefPubMedGoogle Scholar
  32. Yang Z, Kong FX, Shi XL, Cao HS (2006) Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia 563:225–230. doi: 10.1007/s10750-005-0008-9 CrossRefGoogle Scholar
  33. Yu Q, Liu ZW, Chen YC, Zhu DJ (2015) Modelling daily variation in the vertical distribution of Microcystis. Zhongguo Huanjing Kexue/China Environ Sci 35:1840–1846. doi: 10.3969/j.issn.10006923.2015.06.029 Google Scholar

Copyright information

© The Ecological Society of Japan 2017

Authors and Affiliations

  1. 1.Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of MechanicsChinese Academy of SciencesBeijingChina
  2. 2.Department of Mechanics, School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina
  3. 3.State Key Laboratory of Water Resources and Hydropower Engineering ScienceWuhan UniversityWuhanChina

Personalised recommendations