Ecological Research

, Volume 32, Issue 6, pp 909–919 | Cite as

Abundance and diversity of soil mite (Acari) communities after conversion of tropical secondary forest into rubber plantations in Grand-Lahou, Côte d’Ivoire

  • Julien Kouadio N’Dri
  • Fabrice Ange Seka
  • Pacôme Konan Pokou
  • Rodolphe Arnaud Guy N’Da
  • Jan Lagerlöf
Original Article


The objective of this investigation was to understand the modification of mite communities and soil physico-chemical parameters after conversion of secondary forests into rubber plantations and how these change with the aging of the plantations. The sampling was performed in a humid period and samples were taken from three of each age of secondary forests, 7-year-old rubber plantations, 12-year-old rubber plantations and 25-year-old rubber plantations. We hypothesized that the stress imposed on mite communities during site preparation and planting would be compensated for by the reduction of the soil degradation index as the rubber plantations age. Across the 12 sampling areas, 120 soil cores were taken at 10 cm soil depth over a 40 m transect. Soil physico-chemical parameters were characterized and soil mites were extracted with a modified Berlese-Tullgren funnel over the course of 10 days. The results showed that conversion of secondary forests into rubber plantations leads to a modification in the density of mites (−60 and +1%), species richness (−48 and −15%), water content (−62 and −31%), soil organic carbon (−67 and −51%) and total nitrogen (−64 and −52%) respectively after about 7 and 25 years of conversion. The investigation pointed out an improvement in soil ecological quality with the aging of rubber plantations over time and this was characterized by an increase in the density of mites (+150%), species richness (+63%), water content (+84%), organic carbon (+50%) and total nitrogen (+33%) in the 25-year-old plantations compared to the 7-year-old plantations.


Density of mites and species richness Soil physico-chemical parameters Soil degradation index Rubber plantations Secondary forest 



The authors would like to thank the farmers and SODEFOR staff for their involvement in identifying suitable plantations for this work. We thank the field workers for their assistance during the sampling period. A Big thank you goes out to Prof Jérôme E. TONDOH for its assistance on the project and its advices during data analysis. We thank Dr. Martine Kah Touao GAUZE, Director of the Ecological Research Center, for accommodating the project in his institute. Thanks to Drs. Martinez A. GUÉI and Ettien F. EDOUKOU for technical assistance. This study was supported by the International Foundation for Science/Ref. D/5287-1.

Supplementary material

11284_2017_1499_MOESM1_ESM.pdf (51 kb)
Supplementary material 1 (PDF 51 kb)


  1. Allen K, Corre MD, Tjoa A, Veldkamp E (2015) Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLOS One. doi: 10.1371/journal.pone.0133325
  2. Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility. A handbook of methods. CAB International, WallingfordGoogle Scholar
  3. Assié KH, Angui P, Tamia AJ (2008) Effets de la mise en culture et des contraintes naturelles sur quelques propriétés physiques d’un sol ferrallitique au Centre Ouest de la Côte d’Ivoire: conséquences sur la dégradation des sols. Eur J Sci Res 23:149–166Google Scholar
  4. Badejo MA, Akinwole PO (2006) Microenvironmental preferences of oribatid mite species on the floor of a tropical rainforest. Exp Appl Acarol 40:145–156CrossRefPubMedGoogle Scholar
  5. Badejo MA, Ola-Adams BA (2000) Abundance and diversity of soil mites of fragmented habitats in a biosphere reserve in southern Nigeria. Pesq agropec Brasilia 35:2121–2128CrossRefGoogle Scholar
  6. Balogh J, Balogh P (1992) The oribatid mites genera of the world, vol 12. The Hungarian National Museum Press, BudapestGoogle Scholar
  7. Bedano JC, Ruf A (2007) Soil predatory mite communities (Acari: Gamasina) in agroecosystems of Central Argentina. Appl Soil Ecol 36:22–31CrossRefGoogle Scholar
  8. Bedano JC, Cantu MP, Doucet ME (2006) Influence of three different land management practices on soil mite (Arachnida: Acari) densities in relation to a natural soil. Appl Soil Ecol 32:293–304CrossRefGoogle Scholar
  9. Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosyst Environ 74:411–423CrossRefGoogle Scholar
  10. Berthet PL (1964) Field Study of the Mobility of Oribatei (Acari), Using Radioactive Tagging. J Anim Ecol 33:443–449CrossRefGoogle Scholar
  11. Brindoumi JKA (2015) Les facteurs du développement de l’hévéaculture en Côte d’Ivoire de 1994 à 2012. Eur Sci J 11:202–219Google Scholar
  12. Cao Z, Hana X, Hub C, Chen J, Zhang D, Steinberger Y (2011) Changes in the abundance and structure of a soil mite (Acari) community under long-term organic and fertilizer treatments. Appl Soil Ecol 49:131–138CrossRefGoogle Scholar
  13. Caruso T, Pigino G, Bernini F, Bargagli R, Migliorini M (2007) The Berger-Parker index as an effective tool for monitoring the biodiversity of disturbed soils: a case study on Mediterranean oribatid (Acari: Oribatida) assemblages. Biodivers Conserv 16:3277–3285CrossRefGoogle Scholar
  14. Chakraborty P, Bhattacharya T (1993) Spatial microdistribution pattern oforibatida (Acari) of a rubber plantation and an adjacent wasteland inTripura (India). Proc zool Soc Calcutta 46:119–123Google Scholar
  15. Chao A, Chazdon RL, Colwell RK, Shen T-J (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159CrossRefGoogle Scholar
  16. Chaudhuri PS, Nath S (2011) Community structure of earthworms under rubber plantations and mixed forests in Tripura, India. J Environ Biol 32:537–541PubMedGoogle Scholar
  17. Chaudhuri PS, Bhattacharjee S, Dey A, Chattopadhyay S, Bhattacharya D (2013) Impact of age of rubber (Hevea brasiliensis) plantation on earthworm communities of West Tripura (India). J Environ Biol 34:59–65PubMedGoogle Scholar
  18. CNRA (2013) Le Centre National de Recherche Agronomique en 2012. Nous inventons aujourd’hui l’agriculture de demain. Accessed 25 Jan 2015
  19. Colwell RK (2005) EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 7.5. Persistent Scholar
  20. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond 345B:101–118CrossRefGoogle Scholar
  21. Colwell RK, Mao CX, Chang J (2004) Interpolating, extrapolating and comparing incidence-based species accumulation curves. Ecology 85:2717–2727CrossRefGoogle Scholar
  22. Dawoe EK, Quashie-Sam JS, Oppong SK (2014) Effect of land-use conversion from forest to cocoa agroforest on soil characteristics and quality of a Ferric Lixisol in lowland humid Ghana. Agroforest Syst 88:119–127CrossRefGoogle Scholar
  23. Dindal DL (1990) Soil biology guide. Wiley, New YorkGoogle Scholar
  24. Ducarme X, André HM, Wauthy G, Lebrun P (2004) Are there real endogeic species in temperate forest mites? Pedobiologia 48:139–147CrossRefGoogle Scholar
  25. Ettian MK, Soulemane O, Tahou TM (2009) Influence du régime alimentaire sur l’intervalle de parturition des aulacodes en captivité dans la région de Grand-Lahou (Côte d’Ivoire, Afrique de l’Ouest). J Anim Plant Sci 4:311–319Google Scholar
  26. FAO (2001) Global forest resources assessment 2000. Forestry paper, RomeGoogle Scholar
  27. FAO (2012) Situation des forêts du monde: les dix premières éditions. In: Situation des forêts du monde. Forestry paper, Rome, Italy, pp 1–8Google Scholar
  28. Franklin E, Hayek T, Fagundes EP, Silva LL (2004) Oribatid mite (Acari: Oribatida) contribution to decomposition dynamic of leaf litterin primary forest, second growth, and polyculture in the central amazon. Braz J Biol 64:59–72CrossRefPubMedGoogle Scholar
  29. Gamito S (2010) Caution is needed when applying Margalef diversity index. Ecol Indic 10:550–551CrossRefGoogle Scholar
  30. Gilot C, Lavelle P, Blancart E, Keli J, Kouassi P, Guillaume G (1995) Biological activity of soil under plantations in Côte d’Ivoire. Acta Zool Fennica 196:186–189Google Scholar
  31. Gréggio TC, Assis LC, Nahas E (2008) Decomposition of the rubber tree Hevea brasiliensis litter at two depths. Chil J Agric Res 68:128–135CrossRefGoogle Scholar
  32. Guillaume T, Damris M, Kuzyakov Y (2015) Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ13C. Glob Change Biol 21:3548–3560CrossRefGoogle Scholar
  33. Guillaume T, Maranguit D, Murtilaksono K, Kuzyakov Y (2016) Sensitivity and resistance of soil fertility indicators to land-use changes: new concept and examples from conversion of Indonesian rainforest to plantations. Ecol Indic 67:49–57CrossRefGoogle Scholar
  34. Gulvik ME (2007) Mites (Acari) as indicators of soil biodiversity and land use monitoring. Pol J Ecol 55:415–440Google Scholar
  35. Hansen RA, Coleman DC (1998) Litter complexity and composition are determinants of the diversity and species composition of oribatid mites(Acari: Oribatida) in litterbags. Appl Soil Ecol 9:17–23CrossRefGoogle Scholar
  36. Hasegawa M, Okabe K, Fukuyama K, Makino S, Okochi I, Tanaka H, Goto H, Mizoguchi T, Sakata T (2012) Community structures of Mesostigmata, Prostigmata and Oribatida in broad-leaved regeneration forests and conifer plantations of various ages. Exp Appl Acarol. doi: 10.1007/s10493-012-9618-x
  37. Koukol O, Mourek J, Janovsky Z, Cerna K (2009) Do oribatid mites (Acari: Oribatida) show a higher preference for ubiquitous vs. specialized saprotrophic fungi from pine litter? Soil Biol Biochem 41:1124–1131CrossRefGoogle Scholar
  38. Krantz GW (1978) A manual of acarology, 2nd edn. Oregon State University Bookstores, CorvallisGoogle Scholar
  39. Krantz GW, Walter DE (2009) A manual of acarology, 3rd edn. Texas Tech University Press, LubbockGoogle Scholar
  40. Krashevska V, Klarner B, Widyastuti R, Maraun M, Scheu S (2015) Impact of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities. Biol Fertil Soils. Doi  10.1007/s00374-015-1021-4
  41. Krashevska V, Klarner B, Widyastuti R, Maraun M, Scheu S (2016) Changes in structure and functioning of protist (Testate Amoebae) communities due to conversion of lowland rainforest into rubber and oil palm plantations. Plos One. doi: 10.1371/journal.pone.0160179
  42. Lindo Z, Visser S (2004) Forest floor microarthropod abundance and oribatid mite (Acari: Oribatida) composition following partial and clear-cut harvesting in the mixedwood boreal forest. Can J For Res 34:998–1006CrossRefGoogle Scholar
  43. Maribie CW, Nyamasyo GHN, Ndegwa PN, Mung’atu JK, Lagerlöf J, Gikungu M (2011) Abundance and diversity of soil mites (Acari) along a gradient of land use types in Taita Taveta, Kenya. Trop Subtrop Agroecosyst 13:11–26Google Scholar
  44. Minor MA, Cianciolo JM (2007) Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York. Appl Soil Ecol 35:140–153CrossRefGoogle Scholar
  45. N’Dri JK, André HM, Lagerlof J, Tondoh JE, Hance T (2013) Response of soil mite abundance and diversity to a monospecific timber Tectona grandis plantation in Ivory Coast. Curr Zool 59:633–643CrossRefGoogle Scholar
  46. N’Dri JK, Hance T, André HM, Lagerlöf Jan, Tondoh JE (2016) Microarthropod use as bioindicators of the environmental state: case of soil mites (Acari) from Côte d’Ivoire. J Anim Plant Sci 29:4622–4637Google Scholar
  47. N’Dri JK, Zon SD, Tondoh JE, Jan Lagerlöf (2017) Changes in mite richness and diversity along a gradient of land-use intensity from mid-west Ivory Coast. Trop Ecol. (Accepted in press)Google Scholar
  48. Oke OA, Adejuyigbe CO, Ajede OA (2005) Survey of soil micro-arthropods in selected sites in ogun state. Paper prepared for presentation at the Farm Management Association of Nigria Conference, Asaba, Nigeria, October 18–20, pp 13–19Google Scholar
  49. Parisi VC, Menta C, Gardi C, Jacomini C, Mozzanica E (2005) Microarthropod communities as a tool to assess soil quality and biodiversity: a new approach in Italy. Agric Ecosyst Environ 105:323–333CrossRefGoogle Scholar
  50. Perraud A (1971) Les sols. In: Avenard JM, Eldln M, Girard G, Sircoulon J, Touchebeuf P, Guillaumet JL, Adjanohoun E, Perraud A (eds) Le milieu naturel de la Côte d’Ivoire, vol 50. Office de la recherche scientifique et technique outre-mer, Paris, pp 265–391Google Scholar
  51. Pielou EC (1969) An introduction to mathematical ecology. Wiley-Interscience, New YorkGoogle Scholar
  52. Podong C, Poolsiri R (2012) Effects of Land use types on carbon and nitrogen content in litter in Huai Lam KradonSubwatershed, Lower Northern Thailand. In: International Conference on Eco-systems and Biological Sciences Penang (Malaysia), May 19–20, pp 44–50Google Scholar
  53. Ruf F (2000) Déterminants sociaux et économiques de la replantation. Ol Corps Gras Li 7:189–196CrossRefGoogle Scholar
  54. Ruf F (2009) L’adoption de l’hévéaculture en Côte d’Ivoire Prix, imitation et changement écologique. In: Session: Innovation des agricultures familiales et politiques publiques. Le cas de l’hévéaculture. 3èmes journées de recherches en sciences sociales. INRA-SFER-CIRAD,Montpellier,France. Accessed 15 Feb 2015
  55. Sarkar SK, Chakraborty K, Moitra MN (2014) Observation on abundance and group diversity of soil microarthropods with special reference to acarines at four differently used soil habitats. Int J Sci Res Publ 4:1–8Google Scholar
  56. Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004) Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biol Biochem 36:1769–1774CrossRefGoogle Scholar
  57. Schneider K, Scheu S, Maraun M (2007) Microarthropod density and diversity respond little to spatial isolation. Basic Appl Ecol 8:26–35CrossRefGoogle Scholar
  58. Shannon CE, Wiener W (1962) The mathematical theory of communication, 2nd edn. University of Illinois Press, UrbanaGoogle Scholar
  59. Tondoh JE, Kouamé FN, Guéi AM, Sey B, Koné AW, Gnessougou N (2015) Ecological changes induced by full-sun cocoa farming in Côte d’Ivoire. Glob Ecol Conserv 3:575–595CrossRefGoogle Scholar
  60. Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736CrossRefGoogle Scholar
  61. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic titration method. Soil Sci 34:29–38CrossRefGoogle Scholar
  62. Walter DE, Latonas S, Byers K (2013) Almanac of Alberta Oribatida. Part 1. Ver. 2.3. The Royal Alberta Museum, Edmonton, AB. Accessed 15 Sep 2014
  63. Wardle DA (1995) Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. Adv Ecol Res 26:105–185CrossRefGoogle Scholar
  64. Yang X, Chen J (2009) Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biol Biochem 41:910–918CrossRefGoogle Scholar
  65. Yéo JG (2017) Décomposition de la litière d’hévéa (Hevea brasiliensis Muell., Euphorbiaceae) suivant une séquence d’âge dans le sud de la Côte d’Ivoire. In: Mémoire pour l’obtention du Master 1 en Biodiversité et Gestion Durable des Ecosystèmes. Unité de formation et de Recherche des Sciences de la Nature. Université Nangui Abrogoua, Abidjan-Côte d’IvoireGoogle Scholar
  66. Zhao J, Shao Y, Wang X, Neher DA, Xu G, Li ZA, Fu S (2013) Sentinel soil invertebrate taxa as bioindicators for forest management practices. Ecol Indic 24:236–239CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2017

Authors and Affiliations

  1. 1.Unité de Formation et de Recherche (UFR) des Sciences de la NatureUniversité Nangui AbrogouaAbidjan 02Côte d’Ivoire
  2. 2.Centre de Recherche en EcologieAbidjan 08Côte d’Ivoire
  3. 3.Swedish University of Agricultural Sciences (SLU), Dept. of EcologyUppsalaSweden

Personalised recommendations