Ecological Research

, Volume 32, Issue 6, pp 845–857 | Cite as

Moso bamboo (Phyllostachys pubescens) forests as a significant carbon sink? A case study based on 4-year measurements in central Taiwan

  • Meng-Yin Lin
  • I-Fang Hsieh
  • Po-Hsuan Lin
  • Sophie Laplace
  • Mizue Ohashi
  • Tsai-Huei Chen
  • Tomonori Kume
Special Feature: Original Article Filling the gaps


The aggressive expansion of Moso bamboo (Phyllostachys pubescens) forest into adjacent ecosystems which might alter the carbon balance replacement, has been noted recently in East Asian countries such as Taiwan. Moso bamboo has a biennial growth cycle that causes significant inter-annual variations in net primary productivity (NPP) and net ecosystem productivity (NEP). To our knowledge, only one study has investigated NPP covering biennial cycles in a Moso bamboo forest. Therefore, the aim of the present study was to clarify the NPP and NEP in a Moso bamboo forest in Taiwan by considering above- and below-ground processes over a 4-year experimental period. The estimated NPP and NEP showed considerable inter-annual variations (coefficient of variation of 39 and 79%, respectively). Averaged over the 4 years, the NPP and NEP were 8.86 ± 3.46 and 4.32 ± 3.35 Mg C ha−1 year−1, respectively, which were within the ranges (6.53–14.36 and 3.59–7.98 Mg C ha−1 year−1, respectively) reported for Moso bamboo forests in East Asian countries. A global comparison of NPP and NEP among forest ecosystems using data from published literature indicated that the estimated NPP and NEP in the present study, as well as those in Moso bamboo forests from East Asian countries, were within the upper range of the values reported for other forest ecosystem. The results indicate that Moso bamboo forests may have high potential as a carbon sink among forests ecosystems.


Above-ground biomass Below-ground biomass Carbon cycle Net ecosystem productivity Net primary productivity 



We are grateful to the Experimental Forest, National Taiwan University, for providing the opportunity to conduct this study. We also thank Dr. Chih-Hsin Cheng and Dr. Wei-Li Liang (National Taiwan University) for technical support. We highly appreciate all the site researchers and the numerous regional flux networks (Afriflux, Ameriflux, AsiaFlux, CarboAfrica, CarboEurope-IP, ChinaFlux, Fluxnet-Canada, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, USCCC and Fluxnet) for supporting the measurements works without which that the integrated analysis in this study cannot be complete.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


The Ministry of Science Technology (Taiwan) supported this work (Grant Nos.: 103-2313-B-002-009-MY3 and 105-2628-B-002-001-MY3).

Supplementary material

11284_2017_1497_MOESM1_ESM.pdf (783 kb)
Supplementary material 1 (PDF 783 kb)


  1. Addo-Danso SD, Prescott CE, Smith AR (2016) Methods for estimating root biomass and production in forest and woodland ecosystem carbon studies: a review. For Ecol Manag 359:332–351. doi: 10.1016/j.foreco.2015.08.015 CrossRefGoogle Scholar
  2. Bellassen V, Luyssaert S (2014) Carbon sequestration: managing forests in uncertain times. Nature 506:153–155CrossRefPubMedGoogle Scholar
  3. Bijak S, Zasada M, Bronisz A, Bronisz K, Czajkowski M, Ludwisiak Ł, Tomusiak R, Wojtan R (2013) Estimating coarse roots biomass in young silver birch stands on post-agricultural lands in central Poland. Silva Fennica 47:1–14CrossRefGoogle Scholar
  4. Bond-Lamberty B, Bronson D, Bladyka E, Gower ST (2011) A comparison of trenched plot techniques for partitioning soil respiration. Soil Biol Biochem 43:2108–2114. doi: 10.1016/j.soilbio.2011.06.011 CrossRefGoogle Scholar
  5. Brando PM, Nepstad DC, Davidson EA, Trumbore SE, Ray D, Camargo P (2008) Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos Trans R Soc B Biol Sci 363:1839–1848. doi: 10.1098/rstb.2007.0031 CrossRefGoogle Scholar
  6. Chen D, Zhang C, Wu J, Zhou L, Lin Y, Fu S (2011a) Subtropical plantations are large carbon sinks: Evidence from two monoculture plantations in South China. Agric For Meteorol 151:1214–1225. doi: 10.1016/j.agrformet.2011.04.011 CrossRefGoogle Scholar
  7. Chen T-H, Liu C-P, Chung H-Y (2011b) Growth and biomass of moso bamboo in Fenghuang mountain, Nantou County. Q J Chin For 44:19–28 (in Chinese with English summary) Google Scholar
  8. Chen T-H, Chiu C-Y, Xie Z-Y, Wang J (2014) Growth characteristics of Moso bamboo (Phyllostachys Pubescens) plantations at various altitudes-for instance in Daan Area, Nantou County. Q J Chin For 47:181–192 (in Chinese with English summary) Google Scholar
  9. Chen G, Chen B, Yu D, Tam FY, Ye Y, Chen S (2016a) Soil greenhouse gas emissions reduce the contribution of mangrove plants to the atmospheric cooling effect. Environ Res Lett 11:124019CrossRefGoogle Scholar
  10. Chen T-H, Wang D-H, Wang S (2016b) The trend of growth characteristics of Moso bamboo (Phyllostachys pubescens) forests under an unmanaged condition in Central Taiwan. Taiwan J For Sci 31:75–87Google Scholar
  11. Cheng C-H, Hung C-Y, Chen C-P, Pei C-W (2013) Biomass carbon accumulation in aging Japanese cedar plantations in Xitou, central Taiwan. Bot Stud 54:60. doi: 10.1186/1999-3110-54-60 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chiu C-W, Kume T, Komatsu H, Tseng H, Wey T-H, Otsuki K (2016) Seasonal changes of azimuthal, radial, and tree-to-tree variations in sap flux affect stand transpiration estimates in a Cryptomeria japonica forest, central Taiwan. J For Res 21:151–160. doi: 10.1007/s10310-016-0525-6 CrossRefGoogle Scholar
  13. Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecol Appl 11:356–370CrossRefGoogle Scholar
  14. Eckblad JW (1991) How many samples should be taken? BioSci 41:346–348. doi: 10.2307/1311590 CrossRefGoogle Scholar
  15. Fukushima K, Usui N, Ogawa R, Tokuchi N (2015) Impacts of moso bamboo (Phyllostachys pubescens) invasion on dry matter and carbon and nitrogen stocks in a broad-leaved secondary forest located in Kyoto, western Japan. Plant Species Biol 30:81–95CrossRefGoogle Scholar
  16. Goto S, Bagana Kawai H, Zhang F, Jia S, Saijoh Y, Akiyama T (2008) Estimation of biomass and carbon storage in abandoned bamboo stands ecosystem. J Jpn Agric Syst Soc 24:243–252. doi: 10.14962/jass.24.4_243 (in Japanese with English summary) Google Scholar
  17. Hirano Y, Noguchi K, Ohashi M, Hishi T, Makita N, Fujii S, Finér L (2009) A new method for placing and lifting root meshes for estimating fine root production in forest ecosystems. Plant Root 3:26–31. doi: 10.3117/plantroot.3.26 CrossRefGoogle Scholar
  18. Hsieh I-F, Kume T, Lin M-Y, Cheng C-H, Miki T (2016) Characteristics of soil CO2 efflux under an invasive species, Moso bamboo, in forests of central Taiwan. Trees 30:1749–1759. doi: 10.1007/s00468-016-1405-6 CrossRefGoogle Scholar
  19. Huang M, Ji J, Li K, Liu Y, Yang F, Tao B (2007) The ecosystem carbon accumulation after conversion of grasslands to pine plantations in subtropical red soil of South China. Tellus B 59:439–448. doi: 10.1111/j.1600-0889.2007.00280.x CrossRefGoogle Scholar
  20. Hwang J, Chung Y, Lee S, Kim B, Shin H, Lee K, Park K (2005) Estimation of aboveground biomass and belowground nutrient contents for a Phyllostachys pubescens stand. J Korean For Soc  94:161–167Google Scholar
  21. Intergovernmental Panel on Climate Change (IPCC) (2006) IPCC guidelines for national greenhouse gas inventories. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Agriculture, forestry and other land use. vol 4. IGES, JapanGoogle Scholar
  22. Isagi Y, Kawahara T, Kamo K, Ito H (1997) Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecol 130:41–52CrossRefGoogle Scholar
  23. Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grünwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik Ü, Morgenstern K, Oltchev S, Clement R, Guðmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Change Biol 7:269–278. doi: 10.1046/j.1365-2486.2001.00412.x CrossRefGoogle Scholar
  24. Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448. doi: 10.1016/j.soilbio.2005.08.020 CrossRefGoogle Scholar
  25. Lee KS, Jung SY, Son YM, Lee KH, Bae EJ, Yun SL (2012) Biomass estimation of Phyllostachys pubescens stands in KFRI, Southern Forest Research Center. J Korean For Soc 101:138–147 (in Korean with English summary) Google Scholar
  26. Li R, Werger MJA, During HJ, Zhong ZC (1998) Biennial variation in production of new shoots in groves of the giant bamboo Phyllostachys pubescens in Sichuan, China. Plant Ecol 135:103–112. doi: 10.1023/A:1009761428401 CrossRefGoogle Scholar
  27. Li Z-J, Lin P, He J-Y, Yang Z-W, Lin Y-M (2006) Silicon’s organic pool and biological cycle in moso bamboo community of Wuyishan Biosphere Reserve. J Zhejiang Univ Sci B 7:849–857. doi: 10.1631/jzus.2006.B0849 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lin W (1961) Studies on the classification of Bambusaceae in Taiwan. Report No. 4. Taiwan Forestry Research Institute, p 145Google Scholar
  29. Liu S-C, Kao Y-P (1988) Generalized biomass equations for Moso bamboo and leucaena plantations. Bull Taiwan For Res Inst 3:393–406 (in Chinese with English summary) Google Scholar
  30. Luyssaert, S, Inglima I, Jung M (2009) Global Forest Ecosystem Structure and Function Data for Carbon Balance Research. Data set. Available on-line [] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. doi: 10.3334/ORNLDAAC/949
  31. Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beer C, Bernhofer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, GrÜNwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolari P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13:2509–2537. doi: 10.1111/j.1365-2486.2007.01439.x CrossRefGoogle Scholar
  32. Ma Z, Liu Q, Wang H, Li X, Zeng H, Xu W (2008) Observation and modeling of NPP for Pinus elliottii plantation in subtropical China. Sci China Ser D Earth Sci 51:955–965. doi: 10.1007/s11430-008-0075-7 CrossRefGoogle Scholar
  33. Majdi H, Pregitzer K, Morén A-S, Nylund J-E, Ågren GI (2005) Measuring fine root turnover in forest ecosystems. Plant Soil 276:1–8. doi: 10.1007/s11104-005-3104-8 CrossRefGoogle Scholar
  34. Miller AT, Allen HL, Maier CA (2006) Quantifying the coarse-root biomass of intensively managed loblolly pine plantations. Can J For Res 36:12–22. doi: 10.1139/x05-229 CrossRefGoogle Scholar
  35. Osawa A, Aizawa R (2012) A new approach to estimate fine root production, mortality, and decomposition using litter bag experiments and soil core techniques. Plant Soil 355:167–181. doi: 10.1007/s11104-011-1090-6 CrossRefGoogle Scholar
  36. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. doi: 10.1126/science.1201609 CrossRefPubMedGoogle Scholar
  37. Park I, Ryu S (1996) Biomass, net production and nutrient distribution of bamboo Phyllostachys stands in Korea. J Korean For Soc 85:453–461 (in Korean with English summary) Google Scholar
  38. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, Accessed 18 May 2015
  39. Roxburgh SH, Berry SL, Buckley TN, Barnes B, Roderick ML (2005) What is NPP? Inconsistent accounting of respiratory fluxes in the definition of net primary production. Funct Ecol 19:378–382. doi: 10.1111/j.1365-2435.2005.00983.x CrossRefGoogle Scholar
  40. Schippers P, Vlam M, Zuidema P, Sterck F (2015) Sapwood allocation in tropical trees: a test of hypotheses. Funct Plant Biol 42:697CrossRefGoogle Scholar
  41. Shinohara Y, Kume T, Ichihashi R, Komatsu H, Otsuki K (2014) Moso-bamboo forests in Japan: what are the effects of their area expansion on ecosystem services? J Jpn For Soc 96:351–361 (in Japanese with English summary) CrossRefGoogle Scholar
  42. Smyth CE, Kurz WA, Neilson ET, Stinson G (2013) National-scale estimates of forest root biomass carbon stocks and associated carbon fluxes in Canada. Glob Biogeochem Cycles 27:1262–1273. doi: 10.1002/2012GB004536 CrossRefGoogle Scholar
  43. Song X, Peng C, Zhou G, Gu H, Li Q, Zhang C (2016) Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla). Sci Rep 6:25908. doi: 10.1038/srep25908 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Song Q-N, Lu H, Liu J, Yang J, Yang G-Y, Yang Q-P (2017) Accessing the impacts of bamboo expansion on NPP and N cycling in evergreen broadleaved forest in subtropical China. Sci Rep 7:40383. doi: 10.1038/srep40383 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Sun B-K, Chen Y-T, Yen T-M, Li L-E (2013) Stand characteristics, aboveground biomass and carbon storage of Moso Bamboo (Phyllostachys pubescens) stands under different management levels in central Taiwan. Q J For Res 35:23–32 (in Chinese with English summary) Google Scholar
  46. Suzuki S, Nakagoshi N (2008) Expansion of bamboo forests caused by reduced bamboo-shoot harvest under different natural and artificial conditions. Ecol Res 23:641–647. doi: 10.1007/s11284-007-0422-8 CrossRefGoogle Scholar
  47. Taiwan Forestry Bureau (2016) Forestry statistics. (in Chinese). Accessed 13 Mar 2017
  48. Tan Z-H, Zhang Y-P, Schaefer D, Yu G-R, Liang N, Song Q-H (2011) An old-growth subtropical Asian evergreen forest as a large carbon sink. Atmos Environ 45:1548–1554. doi: 10.1016/j.atmosenv.2010.12.041 CrossRefGoogle Scholar
  49. Tang X, Wang Y-P, Zhou G, Zhang D, Liu S, Liu S, Zhang Q, Liu J, Yan J (2011) Different patterns of ecosystem carbon accumulation between a young and an old-growth subtropical forest in Southern China. Plant Ecol 212:1385–1395. doi: 10.1007/s11258-011-9914-2 CrossRefGoogle Scholar
  50. Tang X, Fan S, Qi L (2012) Effect of different managements on carbon storage and carbon allocation in moso bamboo forest (Phyllostachys pubescen). Acta Agric Univ Jiangxiensis 34:736–742 (in Chinese with English summary) Google Scholar
  51. Tang X, Fan S, Qi L, Guan F, Cai C, Du M (2015a) Soil respiration and carbon balance in a Moso bamboo (Phyllostachys heterocycla (Carr.) Mitford cv. Pubescens) forest in subtropical China. iFor Biogeosci For 8:606–614. doi: 10.3832/ifor1360-007 CrossRefGoogle Scholar
  52. Tang X, Fan S, Qi L, Guan F, Liu G, Du M (2015b) Effects of understory removal on root production, turnover and total belowground carbon allocation in Moso bamboo forests. iFor Biogeosci For 9:187–194. doi: 10.3832/ifor1674-008 CrossRefGoogle Scholar
  53. Tang X, Fan S, Qi L, Guan F, Du M, Zhang H (2016a) Soil respiration and net ecosystem production in relation to intensive management in Moso bamboo forests. CATENA 137:219–228. doi: 10.1016/j.catena.2015.09.008 CrossRefGoogle Scholar
  54. Tang X, Fan S, Lianghua Q, Guan F, Su W, Du M (2016b) A comparison of soil respiration, carbon balance and root carbon use efficiency in two managed Moso bamboo forests in subtropical China. Ann For Res 59:3–20. doi: 10.15287/afr.2016.497 Google Scholar
  55. Tseng H, Chiu C-W, Laplace S, Kume T (2017) Can we assume insignificant temporal changes in spatial variations of sap flux for year-round individual tree transpiration estimates? A case study on Cryptomeria japonica in central Taiwan. Trees 31:1239–1251. doi: 10.1007/s00468-017-1542-6 CrossRefGoogle Scholar
  56. Van Do T, Sato T, Kozan O (2016) A new approach for estimating fine root production in forests: a combination of ingrowth core and scanner. Trees 30:545–554. doi: 10.1007/s00468-015-1195-2 CrossRefGoogle Scholar
  57. Wang J, Chen T-H, Chang H-C, Chung H-Y, Li T-I, Liu C-P (2009) The structures, aboveground biomass, carbon storage of Phyllostachys pubescens stands in Huisun experimental forest station and Shi-Zhuo. Q J For Res 31:17–26 (in Chinese with English summary) Google Scholar
  58. Wang J, Chen T-H, Chen S-Y, Chung H-Y, Liu E-U, Li T-I, Liu C-P (2010) Estimating aboveground biomass and carbon sequestration of Moso Bamboo grown under selection cutting after two years. Q J For Res 32:35–43 (in Chinese with English summary) Google Scholar
  59. Wang B, Wei WJ, Liu CJ, You WZ, Niu X, Man RZ (2013) Biomass and carbon stock in Moso Bamboo Forests in subtropical China: characteristics and implications. J Trop For Sci 25:137–148Google Scholar
  60. Watson RT, Noble IR, Bolin B, Ravindranath N, Verardo DJ, Dokken DJ (2000) Land use, land-use change and forestry. A special report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University, CambridgeGoogle Scholar
  61. Wi S-G, Lee D-S, Nguyen QA, Bae H-J (2017) Evaluation of biomass quality in short-rotation bamboo (Phyllostachys pubescens) for bioenergy products. Biotechnol Biofuels 10:127. doi: 10.1186/s13068-017-0818-9 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Woodwell GM, Whittaker RH (1968) Primary production in terrestrial ecosystems. Am Zool 8:19–30. doi: 10.1093/icb/8.1.19 CrossRefGoogle Scholar
  63. Xiao F-M, Fan S-H, Wang S-L, Yu X-J, Shen Z-Q (2010) Estimation of the carbon balance in Moso Bamboo and Chinese Fir plantation ecosystem. Sci Silvae Sin 46:59–65 (in Chinese with English summary) Google Scholar
  64. Yan J, Wang Y, Zhou G, Zhang D (2006) Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Glob Change Biol 12:810–821. doi: 10.1111/j.1365-2486.2006.01141.x CrossRefGoogle Scholar
  65. Yang Y-S, Chen G-S, Guo J-F, Xie J-S, Wang X-G (2007) Soil respiration and carbon balance in a subtropical native forest and two managed plantations. Plant Ecol 193:71–84. doi: 10.1007/s11258-006-9249-6 CrossRefGoogle Scholar
  66. Yen T-M, Ji Y-J, Lee J-S (2010) Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For Ecol Manag 260:339–344. doi: 10.1016/j.foreco.2010.04.021 CrossRefGoogle Scholar
  67. Yiping L, Yanxia L, Buckingham K, Henley G, Guomo Z (2010) Bamboo and climate change mitigation. Tech Rep No. 32. International Network for Bamboo and Rattan (INBAR), BeijingGoogle Scholar
  68. Yuen JQ, Fung T, Ziegler AD (2017) Carbon stocks in bamboo ecosystems worldwide: estimates and uncertainties. For Ecol Manag 393:113–138. doi: 10.1016/j.foreco.2017.01.017 CrossRefGoogle Scholar
  69. Zhuang S, Ji H, Zhang H, Sun B (2015) Carbon storage estimation of Moso bamboo (Phyllostachys pubescens) forest stands in Fujian, China. Trop Ecol 56:383–391Google Scholar

Copyright information

© The Ecological Society of Japan 2017

Authors and Affiliations

  1. 1.Taiwan Forestry Research Institute, Council of Agriculture, Executive YuanTaipeiTaiwan
  2. 2.Department of BiologyBoston UniversityBostonUSA
  3. 3.School of Forestry and Resource ConservationNational Taiwan UniversityTaipeiTaiwan
  4. 4.Experimental Forest of National Taiwan UniversityNantouTaiwan
  5. 5.School of Human Science and EnvironmentUniversity of HyogoHimejiJapan

Personalised recommendations