Austrheim G, Eriksson O (2008) Plant species diversity and grazing in the Scandinavian mountains—patterns and processes at different spatial scales. Ecography 24:683–695. doi:10.1111/j.1600-0587.2001.tb00530.x
Article
Google Scholar
Bartoń K (2015) MuMIn: Multi-model inference. R package version 1.15.1. http://CRAN.R-project.org/package=MuMIn
Baur B, Cremene C, Groza G, Schileyko A, Baur A, Erhardt A (2007) Intensified grazing affects endemic plant and gastropod diversity in alpine grasslands of the Southern Carpathian mountains (Romania). Biologia 62:438–445. doi:10.2478/s11756-007-0086-4
Article
Google Scholar
Birks HJB (2015) Some reflections on the refugium concept and its terminology in historical biogeography, contemporary ecology and global-change biology. Biodiversity 16:196–212. doi:10.1080/14888386.2015.1117022
Article
Google Scholar
Bliss LC (1962) Adaptations of arctic and alpine plants to environmental conditions. Arctic 15:117–144. doi:10.1002/jsfa.4509
Article
Google Scholar
Bliss LC (1963) Alpine plant communities of the presidential range, New Hampshire. Ecology 44:678–697. doi:10.2307/1933014
Article
Google Scholar
Bliss LC (1971) Arctic and alpine plant life cycles. Annu Rev Ecol Syst 2:405–438
Article
Google Scholar
Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179. doi:10.2307/1938672
Article
Google Scholar
Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308
Article
Google Scholar
Craft C, Judy R, John NS, Stephen WB (2016) Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) Marshes. Ecol Appl 9:1405–1419
Article
Google Scholar
Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Glob Change Biol 17:1022–1035. doi:10.1111/j.1365-2486.2010.02263.x
Article
Google Scholar
Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann NE, Guisan A, Willner W, Plutzar C, Leitner M, Mang T, Caccianiga M, Dirnböck T, Ertl S, Fischer A, Lenoir J, Svenning JC, Psomas A, Schmatz DR, Silc U, Vittoz P, Hülber K (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Change 2:619–622. doi:10.1038/nclimate1514
Article
Google Scholar
Egli M, Fitze P, Mirabella A (2001) Weathering and evolution of soils formed on granitic, glacial deposits: results from chronosequences of Swiss alpine environments. Catena 45:19–47. doi:10.1016/S0341-8162(01)00138-2
CAS
Article
Google Scholar
Gentili R, Baroni C, Caccianiga M, Armiraglio S, Ghiani A, Citterio S (2015a) Potential warm-stage microrefugia for alpine plants: feedback between geomorphological and biological processes. Ecol Complex 21:87–99. doi:10.1016/j.ecocom.2014.11.006
Article
Google Scholar
Gentili R, Bacchetta G, Fenu G, Cogoni D, Abeli T, Rossi G, Salvatore MC, Baroni C, Citterio S (2015b) From cold to warm-stage refugia for boreo-alpine plants in southern European and Mediterranean mountains: the last chance to survive or an opportunity for speciation? Biodiversity 8386:1–15. doi:10.1080/14888386.2015.1116407
Google Scholar
Geological Survey of Japan AIST (2015) Seamless digital geological map of Japan 1: 200,000. May 29, 2015 version. Geological Survey of Japan. Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology
Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194
Article
Google Scholar
Gude M, Dietrich S, Mäusbacher R, Hauck C, Molenda R, Růžička V, Zacharda M (2003) Probable occurrence of sporadic permafrost in non-alpine scree slopes in central Europe. In: Proceedings 8th International Conference on Permafrost. Zürich. pp 331–336
Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58. doi:10.1007/BF00048870
Article
Google Scholar
Hobbie SE, Gough L (2004) Litter decomposition in moist acidic and non-acidic tundra with different glacial histories. Oecologia 140:113–124. doi:10.1007/s00442-004-1556-9
Article
PubMed
Google Scholar
Hosmer D, Lemeshow S (1989) Applied logistic regression. Wiley & Sons, New York
Google Scholar
Iwatsuki Z (1981) Mosses and liverworts of Japan. Heibonsha, Tokyo
Google Scholar
Iwatsuki K, Yamazaki T, Boufford DE, Ohba H (1993) Flora of Japan, vol IIIa. Kodansha, Tokyo
Google Scholar
Iwatsuki K, Yamazaki T, Boufford DE, Ohba H (1995) Flora of Japan, vol I. Kodansha, Tokyo
Google Scholar
Iwatsuki K, Boufford DE, Ohba H (1999) Flora of Japan, vol IIc. Kodansha, Tokyo
Google Scholar
Jansa J, Vosátka M (2000) In vitro and post vitro inoculation of micropropagated Rhododendrons with ericoid mycorrhizal fungi. Appl Soil Ecol 15:125–136. doi:10.1016/S0929-1393(00)00088-3
Article
Google Scholar
Kaspar TC, Bland WL (1992) Soil temperature and root growth. Soil Sci 154:290–299. doi:10.1097/00010694-199210000-00005
Article
Google Scholar
Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin
Book
Google Scholar
Körner C, Larcher W (1988) Plant life in cold climates. Symp Soc Exp Biol 42:25–57
PubMed
Google Scholar
Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771. doi:10.1126/science.1156831
CAS
Article
PubMed
Google Scholar
Lienert J (2004) Habitat fragmentation effects of fitness of plant populations—a review. J Nat Conserv 12:53–72. doi:10.1016/j.jnc.2003.07.002
Article
Google Scholar
Marrs RH, Bannister P (1978) Response of several members of the Ericaceae to soils of contrasting pH and base-status. J Ecol 66:829–834
Article
Google Scholar
Matsui M, Iguchi K (2001) Vegetation and change of underground temperature throughout the year in the area of NUNOBE “wind-hole”. Trans Meet Hokkaido Branch Jpn Soc 49:76–78
Google Scholar
Mee J, Moore JS (2014) The ecological and evolutionary implications of microrefugia. J Biogeogr 41:837–841. doi:10.1111/jbi.12254
Article
Google Scholar
Mosblech NAS, Bush MB, van Woesik R (2011) On metapopulations and microrefugia: palaeoecological insights. J Biogeogr 38:419–429. doi:10.1111/j.1365-2699.2010.02436.x
Article
Google Scholar
Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford University Press, New York
Google Scholar
Nekola JC (1999) Paleorefugia and neorefugia: the influence of colonization history on community pattern and process. Ecology 80:2459–2473. doi:10.1890/0012-9658(1999)080[2459:PANTIO]2.0.CO;2
Niwa S, Watanabe O, Watanabe N (2000) Cases of illegal collecting of wildflowers in eastern Taisetsuzan National Park. Bull Higashi Taisetsu Museum Nat Hist 22:73–78
Google Scholar
Økland T, Økland RH, Steinne E (1999) Element concentrations in the boreal forest moss Hylocomium splendens: variation related to gradients in vegetation and local environmental factors. Plant Soil 209:71–83. doi:10.1023/A:1004524017264
Article
Google Scholar
Oksanen J, Blanchet G, Kindt FR, Legendre P, Minchin R, O’Hara PB, Simpson RL, Solymos GP, Stevens H, Henry M, Wagner H (2015) vegan: Community Ecology Package. R package version 2.3-2. http://CRAN.R-project.org/package=vegan
Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, Cavieres LA, Guisan A, Haider S, Jakobs G, McDougall K, Millar CI, Naylor BJ, Parks CG, Rew LJ, Seipel T (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486. doi:10.1890/080072
Article
Google Scholar
Pickering CM, Hill W (2007) Impacts of recreation and tourism on plant biodiversity and vegetation in protected areas in Australia. J Environ Manag 85:791–800. doi:10.1016/j.jenvman.2006.11.021
Article
Google Scholar
R Development Core Team (2014) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.r-project.org/
Růžička V, Zacharda M, Němcová L, Šmilauer P, Nekola JC (2012) Periglacial microclimate in low-altitude scree slopes supports relict biodiversity. J Nat Hist 46:2145–2157
Article
Google Scholar
Saito M (1953) The temperature in the ground in an wind-hole area and relation with a plant community. Bull Ecol 2:151–155
Google Scholar
Sato K (1995) An outline of the cool-spots site vegetation of Hokkaido, Japan. Bull Higashi Taisetsu Museum Nat Hist 17:107–115
Google Scholar
Sato K (2008) An outline of the cool-spot site vegetation in the Alps, Central Europe. Bull Hiroshima Univ Econ 30:5–46
Google Scholar
Sato K, Kudo G, Uemura S (1993) Cool-spots site vegetation in Izariiri-Heide, northern Japan. Jpn J Ecol 43:91–98
Google Scholar
Shea KL, Furnier GR (2002) Genetic variation and population structure in central and isolated populations of balsam fir, Abies balsamea (Pinaceae). Am J Bot 89:783–791. doi:10.3732/ajb.89.5.783
Article
PubMed
Google Scholar
Shimokawabe A, Yamaura Y, Akasaka T, Sato T, Shida Y, Yamanaka S, Nakamura F (2015) The distribution of cool spots as microrefugia in a mountainous area. PLoS One 10:e0135732. doi:10.1371/journal.pone.0135732
Article
PubMed
PubMed Central
Google Scholar
Shimokawabe A, Yamaura Y, Sueyoshi M, Kudo G, Nakamura F (2016) Genetic structure of Vaccinium vitis-idaea in lowland cool spot and alpine populations: microrefugia of alpine plants in the mid-latitudes. Alp Bot 126:143–151. doi:10.1007/s00035-016-0169-3
Article
Google Scholar
Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. WH Freman and Company, New York
Google Scholar
Takahashi K, Murayama Y (2014) Effects of topographic and edaphic conditions on alpine plant species distribution along a slope gradient on Mount Norikura, central Japan. Ecol Res 29:823–833. doi:10.1007/s11284-014-1168-8
Article
Google Scholar
Takenaka A (2009) CanopOn2. http://takenaka-akio.org/etc/canopon2/index.html
Tamai A, Nakano T, Masuzawa T (2009) Community structure and morphological changes of Vaccinium vitis-idaea at a tree-line of south slope in Mt Fuji. Mt Fuji Res 3:19–28
Google Scholar
Umemura H (1968) On the Podzolic soils of the central high mountain region in Japan. Pedologist 12:110–117
Google Scholar
Vásquez DLA, Balslev H, Sklenář P (2015) Human impact on tropical-alpine plant diversity in the northern Andes. Biodivers Conserv 24:2673–2683. doi:10.1007/s10531-015-0954-0
Article
Google Scholar
Venables W, Ripley B (2002) Modern applied statistics with S-PLUS. Springer, New York
Book
Google Scholar
Willis KJ, Braun M, Sümegi P, Tóth A (1997) Does soil change cause vegetation change or vice versa ? A temporal perspective from Hungary. Ecology 78:740–750. doi:10.1890/0012-9658(1997)078[0740:DSCCVC]2.0.CO;2
Article
Google Scholar
Zacharda M, Gude M, Růžička V (2007) Thermal regime of three low elevation scree slopes in central Europe. Permafr Periglac Process 18:301–308. doi:10.1002/ppp.598
Article
Google Scholar