Skip to main content

Environmental factors determining the distribution of highland plants at low-altitude algific talus sites

Abstract

Algific talus is a micro-scale habitat type where highland plants (subalpine and alpine species) are found, disjunct from their typical range, in lowland forests. On algific talus, cold airflows from the interstices between talus fragments create a local microclimate colder than surrounding forests. Despite of the widely-known occurrence of unique vegetation on algific talus, critical environmental factors determining the distribution of highland species in this habitat type are unclear. In order to reveal the environmental factors enabling highland species to inhabit algific talus, we investigated the vegetation and environments of 26 algific talus sites and four reference (non-algific talus) sites in Hokkaido, northern Japan. Several algific talus sites were dominated by highland species, while some algific talus sites and all non-algific talus sites were dominated by lowland species. Community analysis based on detrended correspondence analysis (DCA) and canonical corresponding analysis (CCA) revealed that the algific talus sites dominated by highland species had lower ground temperature, more acidic soil, larger canopy openness, and less diverse vegetation than the sites dominated by lowland species. Highland plants might be maintained under conditions stressful for lowland plants, resulting in less competitive situation. Generalized linear models (GLM), used to evaluate the response of individual highland species to environmental factors, revealed that preferable environmental conditions for highland plants are highly species specific. These results indicate that the maintenance of diverse environments is crucial for the conservation of the unique vegetation and local populations of highland species in algific talus areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Austrheim G, Eriksson O (2008) Plant species diversity and grazing in the Scandinavian mountains—patterns and processes at different spatial scales. Ecography 24:683–695. doi:10.1111/j.1600-0587.2001.tb00530.x

    Article  Google Scholar 

  • Bartoń K (2015) MuMIn: Multi-model inference. R package version 1.15.1. http://CRAN.R-project.org/package=MuMIn

  • Baur B, Cremene C, Groza G, Schileyko A, Baur A, Erhardt A (2007) Intensified grazing affects endemic plant and gastropod diversity in alpine grasslands of the Southern Carpathian mountains (Romania). Biologia 62:438–445. doi:10.2478/s11756-007-0086-4

    Article  Google Scholar 

  • Birks HJB (2015) Some reflections on the refugium concept and its terminology in historical biogeography, contemporary ecology and global-change biology. Biodiversity 16:196–212. doi:10.1080/14888386.2015.1117022

    Article  Google Scholar 

  • Bliss LC (1962) Adaptations of arctic and alpine plants to environmental conditions. Arctic 15:117–144. doi:10.1002/jsfa.4509

    Article  Google Scholar 

  • Bliss LC (1963) Alpine plant communities of the presidential range, New Hampshire. Ecology 44:678–697. doi:10.2307/1933014

    Article  Google Scholar 

  • Bliss LC (1971) Arctic and alpine plant life cycles. Annu Rev Ecol Syst 2:405–438

    Article  Google Scholar 

  • Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179. doi:10.2307/1938672

    Article  Google Scholar 

  • Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308

    Article  Google Scholar 

  • Craft C, Judy R, John NS, Stephen WB (2016) Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) Marshes. Ecol Appl 9:1405–1419

    Article  Google Scholar 

  • Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Glob Change Biol 17:1022–1035. doi:10.1111/j.1365-2486.2010.02263.x

    Article  Google Scholar 

  • Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann NE, Guisan A, Willner W, Plutzar C, Leitner M, Mang T, Caccianiga M, Dirnböck T, Ertl S, Fischer A, Lenoir J, Svenning JC, Psomas A, Schmatz DR, Silc U, Vittoz P, Hülber K (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Change 2:619–622. doi:10.1038/nclimate1514

    Article  Google Scholar 

  • Egli M, Fitze P, Mirabella A (2001) Weathering and evolution of soils formed on granitic, glacial deposits: results from chronosequences of Swiss alpine environments. Catena 45:19–47. doi:10.1016/S0341-8162(01)00138-2

    CAS  Article  Google Scholar 

  • Gentili R, Baroni C, Caccianiga M, Armiraglio S, Ghiani A, Citterio S (2015a) Potential warm-stage microrefugia for alpine plants: feedback between geomorphological and biological processes. Ecol Complex 21:87–99. doi:10.1016/j.ecocom.2014.11.006

    Article  Google Scholar 

  • Gentili R, Bacchetta G, Fenu G, Cogoni D, Abeli T, Rossi G, Salvatore MC, Baroni C, Citterio S (2015b) From cold to warm-stage refugia for boreo-alpine plants in southern European and Mediterranean mountains: the last chance to survive or an opportunity for speciation? Biodiversity 8386:1–15. doi:10.1080/14888386.2015.1116407

    Google Scholar 

  • Geological Survey of Japan AIST (2015) Seamless digital geological map of Japan 1: 200,000. May 29, 2015 version. Geological Survey of Japan. Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Gude M, Dietrich S, Mäusbacher R, Hauck C, Molenda R, Růžička V, Zacharda M (2003) Probable occurrence of sporadic permafrost in non-alpine scree slopes in central Europe. In: Proceedings 8th International Conference on Permafrost. Zürich. pp 331–336

  • Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58. doi:10.1007/BF00048870

    Article  Google Scholar 

  • Hobbie SE, Gough L (2004) Litter decomposition in moist acidic and non-acidic tundra with different glacial histories. Oecologia 140:113–124. doi:10.1007/s00442-004-1556-9

    Article  PubMed  Google Scholar 

  • Hosmer D, Lemeshow S (1989) Applied logistic regression. Wiley & Sons, New York

    Google Scholar 

  • Iwatsuki Z (1981) Mosses and liverworts of Japan. Heibonsha, Tokyo

    Google Scholar 

  • Iwatsuki K, Yamazaki T, Boufford DE, Ohba H (1993) Flora of Japan, vol IIIa. Kodansha, Tokyo

    Google Scholar 

  • Iwatsuki K, Yamazaki T, Boufford DE, Ohba H (1995) Flora of Japan, vol I. Kodansha, Tokyo

    Google Scholar 

  • Iwatsuki K, Boufford DE, Ohba H (1999) Flora of Japan, vol IIc. Kodansha, Tokyo

    Google Scholar 

  • Jansa J, Vosátka M (2000) In vitro and post vitro inoculation of micropropagated Rhododendrons with ericoid mycorrhizal fungi. Appl Soil Ecol 15:125–136. doi:10.1016/S0929-1393(00)00088-3

    Article  Google Scholar 

  • Kaspar TC, Bland WL (1992) Soil temperature and root growth. Soil Sci 154:290–299. doi:10.1097/00010694-199210000-00005

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Körner C, Larcher W (1988) Plant life in cold climates. Symp Soc Exp Biol 42:25–57

    PubMed  Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771. doi:10.1126/science.1156831

    CAS  Article  PubMed  Google Scholar 

  • Lienert J (2004) Habitat fragmentation effects of fitness of plant populations—a review. J Nat Conserv 12:53–72. doi:10.1016/j.jnc.2003.07.002

    Article  Google Scholar 

  • Marrs RH, Bannister P (1978) Response of several members of the Ericaceae to soils of contrasting pH and base-status. J Ecol 66:829–834

    Article  Google Scholar 

  • Matsui M, Iguchi K (2001) Vegetation and change of underground temperature throughout the year in the area of NUNOBE “wind-hole”. Trans Meet Hokkaido Branch Jpn Soc 49:76–78

    Google Scholar 

  • Mee J, Moore JS (2014) The ecological and evolutionary implications of microrefugia. J Biogeogr 41:837–841. doi:10.1111/jbi.12254

    Article  Google Scholar 

  • Mosblech NAS, Bush MB, van Woesik R (2011) On metapopulations and microrefugia: palaeoecological insights. J Biogeogr 38:419–429. doi:10.1111/j.1365-2699.2010.02436.x

    Article  Google Scholar 

  • Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford University Press, New York

    Google Scholar 

  • Nekola JC (1999) Paleorefugia and neorefugia: the influence of colonization history on community pattern and process. Ecology 80:2459–2473. doi:10.1890/0012-9658(1999)080[2459:PANTIO]2.0.CO;2

  • Niwa S, Watanabe O, Watanabe N (2000) Cases of illegal collecting of wildflowers in eastern Taisetsuzan National Park. Bull Higashi Taisetsu Museum Nat Hist 22:73–78

    Google Scholar 

  • Økland T, Økland RH, Steinne E (1999) Element concentrations in the boreal forest moss Hylocomium splendens: variation related to gradients in vegetation and local environmental factors. Plant Soil 209:71–83. doi:10.1023/A:1004524017264

    Article  Google Scholar 

  • Oksanen J, Blanchet G, Kindt FR, Legendre P, Minchin R, O’Hara PB, Simpson RL, Solymos GP, Stevens H, Henry M, Wagner H (2015) vegan: Community Ecology Package. R package version 2.3-2. http://CRAN.R-project.org/package=vegan

  • Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, Cavieres LA, Guisan A, Haider S, Jakobs G, McDougall K, Millar CI, Naylor BJ, Parks CG, Rew LJ, Seipel T (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486. doi:10.1890/080072

    Article  Google Scholar 

  • Pickering CM, Hill W (2007) Impacts of recreation and tourism on plant biodiversity and vegetation in protected areas in Australia. J Environ Manag 85:791–800. doi:10.1016/j.jenvman.2006.11.021

    Article  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.r-project.org/

  • Růžička V, Zacharda M, Němcová L, Šmilauer P, Nekola JC (2012) Periglacial microclimate in low-altitude scree slopes supports relict biodiversity. J Nat Hist 46:2145–2157

    Article  Google Scholar 

  • Saito M (1953) The temperature in the ground in an wind-hole area and relation with a plant community. Bull Ecol 2:151–155

    Google Scholar 

  • Sato K (1995) An outline of the cool-spots site vegetation of Hokkaido, Japan. Bull Higashi Taisetsu Museum Nat Hist 17:107–115

    Google Scholar 

  • Sato K (2008) An outline of the cool-spot site vegetation in the Alps, Central Europe. Bull Hiroshima Univ Econ 30:5–46

    Google Scholar 

  • Sato K, Kudo G, Uemura S (1993) Cool-spots site vegetation in Izariiri-Heide, northern Japan. Jpn J Ecol 43:91–98

    Google Scholar 

  • Shea KL, Furnier GR (2002) Genetic variation and population structure in central and isolated populations of balsam fir, Abies balsamea (Pinaceae). Am J Bot 89:783–791. doi:10.3732/ajb.89.5.783

    Article  PubMed  Google Scholar 

  • Shimokawabe A, Yamaura Y, Akasaka T, Sato T, Shida Y, Yamanaka S, Nakamura F (2015) The distribution of cool spots as microrefugia in a mountainous area. PLoS One 10:e0135732. doi:10.1371/journal.pone.0135732

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimokawabe A, Yamaura Y, Sueyoshi M, Kudo G, Nakamura F (2016) Genetic structure of Vaccinium vitis-idaea in lowland cool spot and alpine populations: microrefugia of alpine plants in the mid-latitudes. Alp Bot 126:143–151. doi:10.1007/s00035-016-0169-3

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. WH Freman and Company, New York

    Google Scholar 

  • Takahashi K, Murayama Y (2014) Effects of topographic and edaphic conditions on alpine plant species distribution along a slope gradient on Mount Norikura, central Japan. Ecol Res 29:823–833. doi:10.1007/s11284-014-1168-8

    Article  Google Scholar 

  • Takenaka A (2009) CanopOn2. http://takenaka-akio.org/etc/canopon2/index.html

  • Tamai A, Nakano T, Masuzawa T (2009) Community structure and morphological changes of Vaccinium vitis-idaea at a tree-line of south slope in Mt Fuji. Mt Fuji Res 3:19–28

    Google Scholar 

  • Umemura H (1968) On the Podzolic soils of the central high mountain region in Japan. Pedologist 12:110–117

    Google Scholar 

  • Vásquez DLA, Balslev H, Sklenář P (2015) Human impact on tropical-alpine plant diversity in the northern Andes. Biodivers Conserv 24:2673–2683. doi:10.1007/s10531-015-0954-0

    Article  Google Scholar 

  • Venables W, Ripley B (2002) Modern applied statistics with S-PLUS. Springer, New York

    Book  Google Scholar 

  • Willis KJ, Braun M, Sümegi P, Tóth A (1997) Does soil change cause vegetation change or vice versa ? A temporal perspective from Hungary. Ecology 78:740–750. doi:10.1890/0012-9658(1997)078[0740:DSCCVC]2.0.CO;2

    Article  Google Scholar 

  • Zacharda M, Gude M, Růžička V (2007) Thermal regime of three low elevation scree slopes in central Europe. Permafr Periglac Process 18:301–308. doi:10.1002/ppp.598

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Akitomo Uchida, Shiretoko Museum for his help for identification of bryophytes, and the staff of the Shirataki Geopark office for their help in field surveys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akimi Wakui.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wakui, A., Sueyoshi, M., Shimokawabe, A. et al. Environmental factors determining the distribution of highland plants at low-altitude algific talus sites. Ecol Res 32, 183–191 (2017). https://doi.org/10.1007/s11284-016-1429-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-016-1429-9

Keywords

  • Acidic soil
  • Alpine and subalpine plants
  • Microhabitat
  • Refugia
  • Soil temperature