Skip to main content

Advertisement

Log in

Does forest fragmentation cause an increase in forest temperature?

  • Note and Comment
  • Published:
Ecological Research

Abstract

Forest fragmentation is considered by many to be a primary cause of the current biodiversity crisis. The underlying mechanisms are poorly known, but a potentially important one is associated with altered thermal conditions within the remaining forest patches, especially at forest edges. Yet, large uncertainty remains about the effect of fragmentation on forest temperature, as it is unclear whether temperature decreases from forest edge to forest interior, and whether this local gradient scales up to an effect of fragmentation (landscape attribute) on temperature. We calculated the effect size (correlation coefficient) of distance from forest edge on air temperature, and tested for differences among forest types surrounded by different matrices using meta-analysis techniques. We found a negative edge-interior temperature gradient, but correlation coefficients were highly variable, and significant only for temperate and tropical forests surrounded by a highly contrasting open matrix. Nevertheless, it is unclear if these local-scale changes in temperature can be scaled up to an effect of fragmentation on temperature. Although it may be valid when considering “fragmentation” as forest loss only, the landscape-scale inference is not so clear when we consider the second aspect of fragmentation, where a given amount of forest is divided into a large number of small patches (fragmentation per se). Therefore, care is needed when assuming that fragmentation changes forest temperature, as thermal changes at forest edges depend on forest type and matrix composition, and it is still uncertain if this local gradient can be scaled up to the landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Arroyo-Rodríguez V, Rös M, Escobar F, Melo FPL, Santos BA, Tabarelli M, Chazdon R (2013) Plant β-diversity in fragmented rainforests: testing floristic homogenization and differentiation hypotheses. J Ecol 101:1449–1458

    Article  Google Scholar 

  • Arroyo-Rodríguez V, Melo FPL, Martínez-Ramos M, Bongers F, Chazdon R, Meave JA, Norden N, Santos BA, Leal IR, Tabarelli M (2016) Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol Rev. doi:10.1111/brv.12231

    Google Scholar 

  • Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2009) Introduction to meta-analysis. Wiley, Chichester

    Book  Google Scholar 

  • Cadenasso ML, Traynor MM, Pickett STA (1997) Functional location of forest edges: gradients of multiple physical factors. Can J For Res 27:774–782

    Article  Google Scholar 

  • Chen J, Franklin JF, Spies TA (1993) Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agric For Meteorol 63:219–223

    Article  Google Scholar 

  • Cochrane MA, Laurance WF (2008) Synergisms among fire, land use, and climate change in the Amazon. Ambio 37:522–527

    Article  PubMed  Google Scholar 

  • Davies-Colley RJ, Payne GW, van Elswijk M (2000) Microclimate gradients across a forest edge. N Z J Ecol 24:111–121

    Google Scholar 

  • de Siqueira LP, de Matos MB, Silva-Matos DM, de Cássia Q, Portela R, Braz MIG, Silva-Lima L (2004) Using the variances of microclimate variables to determine edge effects in small Atlantic rain forest fragments, south-eastern Brazil. Ecotropica 10:59–64

    Google Scholar 

  • Delgado JD, Arroyo NL, Arévalo JR, Fernández-Palacios JM (2007) Edge effects of roads on temperature, light, canopy cover, and canopy height in laurel and pine forests (Tenerife, Canary Islands). Landsc Urban Plan 81:328–340

    Article  Google Scholar 

  • Didham RK, Ewers RM (2014) Edge effects disrupt vertical stratification of microclimate in a temperate forest canopy. Pac Sci 68:493–508

    Article  Google Scholar 

  • Didham RK, Lawton JH (1999) Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31:17–30

    Google Scholar 

  • Didham RK, Kapos V, Ewers RM (2012) Rethinking the conceptual foundations of habitat fragmentation research. Oikos 121:161–170

    Article  Google Scholar 

  • Dovčiak M, Brown J (2014) Secondary edge effects in regenerating forest landscapes: vegetation and microclimate patterns and their implications for management and conservation. New For 45:733–744

    Article  Google Scholar 

  • Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewers RM, Banks-Leite C (2013) Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS One 8:e58093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48 (in press)

  • FAO (2012) Global ecological zones for FAO forest reporting: 2010 update. Food and Agriculture Organization of the United Nations, Roma, p 42

    Google Scholar 

  • Gehlhausen SM, Schwartz MW, Augspurger CK (2000) Vegetation and microclimate edge effects in two mixed-mesophytic forest fragments. Plant Ecol 147:21–35

    Article  Google Scholar 

  • Gurevitch J, Hedges LV (1999) Statistical issues in ecological meta-analyses. Ecology 80:1142–1149

    Article  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadley AS, Betts MG (2016) Refocusing habitat fragmentation research using lessons from the last decade. Curr Landsc Ecol Rep 1:55–66

    Article  Google Scholar 

  • Harper KA, MacDonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Essen PA (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782

    Article  Google Scholar 

  • Hedges LV, Vevea JL (1998) Fixed- and random-effects models in meta-analysis. Psychol Meth 3:486–504

    Article  Google Scholar 

  • Heithecker TD, Halpern CB (2007) Edge-related gradients in microclimate in forest aggregates following structural retention harvests in western Washington. For Ecol Manag 248:163–173

    Article  Google Scholar 

  • Latimer CE, Zuckerberg B (2016) Forest fragmentation alters winter microclimates and microrefugia in human-modified landscapes. Ecography 39:1–13

    Article  Google Scholar 

  • Laurance WF (2002) Hyperdynamism in fragmented habitats. J Veg Sci 13:595–602

    Article  Google Scholar 

  • Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampiao E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618

    Article  Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Andrade A, Ewers R, Harms KE, Luizão RCC, Ribeiro JE (2007) Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS One 2:e1017

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehman SM, Rajaonson A, Day S (2006) Edge effects on the density of Cheirogaleus major. Int J Primatol 27:1569–1588

    Article  Google Scholar 

  • Lehtinen RM, Ramanamanjato J-B, Raveloarison JG (2003) Edge effects and extinction proneness in a herpetofauna from Madagascar. Biodivers Conserv 12:1357–1370

    Article  Google Scholar 

  • Li J, Song C, Cao L, Zhu F, Meng X, Wu J (2011) Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China. Remote Sens Environ 115:3249–3263

    Article  Google Scholar 

  • Li J, Li C, Zhu F, Song C, Wu J (2013) Spatiotemporal pattern of urbanization in Shanghai, China between 1989 and 2005. Landsc Ecol 28:1545–1565

    Article  Google Scholar 

  • Magnago LFS, Rocha MF, Meyer L, Martins SV, Meira-Neto JAA (2015) Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments. Biodivers Conserv 24:2305–2318

    Article  Google Scholar 

  • Matlack GR (1993) Microenvironment variation within and among forest edge sites in the eastern United States. Biol Conserv 66:185–194

    Article  Google Scholar 

  • McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12:335–345

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  CAS  PubMed  Google Scholar 

  • Pohlman CL, Turton SM, Goosem M (2007) Edge effects of linear canopy openings on tropical rain forest understory microclimate. Biotropica 39:62–71

    Article  Google Scholar 

  • Rosenberg M, Adams D, Gurevitch J (2000) MetaWin 2.0. Sinauer, Massachusetts

    Google Scholar 

  • Sfair JC, Arroyo-Rodríguez V, Santos BA, Tabarelli M (2016) Taxonomic and functional divergence of tree assemblages in a fragmented tropical forest. Ecol Appl. doi:10.1890/15-1673.1

    PubMed  Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes—eight hypotheses. Biol Rev 87:661–685

    Article  PubMed  Google Scholar 

  • Tuff KT, Tuff T, Davies KF (2016) A framework for integrating thermal biology into fragmentation research. Ecol Lett 19:361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tummers B (2012) DataThief III. http://datathief.Org. Accessed 20 Apr 2016

  • Turton S, Freiburger HJ (1997) Edge and aspect effects on the microclimate of a small tropical forest remnant on the Atherton Tableland, Northeastern Australia. In: Laurance WF, Bierregaard RO Jr (eds) Tropical forest remnants: ecology, management, and conservation of fragmented communities. University of Chicago Press, Chicago, pp 45–54

    Google Scholar 

  • Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1–48

    Article  Google Scholar 

  • Williams-Linera G (1990) Vegetation structure and environmental conditions of forest edges in Panama. J Ecol 78:356–373

    Article  Google Scholar 

  • Williams-Linera G, Domínguez-Gastelú V, García-Zurita ME (1998) Microenvironment and floristics of different edges in a fragmented tropical rainforest. Conserv Biol 12:1091–1102

    Article  Google Scholar 

  • Wright TE, Kasel S, Tausz M, Bennett LT (2010) Edge microclimate of temperate woodlands as affected by adjoining land use. Agric For Meteorol 150:1138–1146

    Article  Google Scholar 

  • Young A, Mitchell N (1994) Microclimate and vegetation edge effects in a fragmented podocarp-broad leaf forest in New Zealand. Biol Conserv 67:63–72

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from PAPIIT-DGAPA-UNAM (IN-204215), CONACyT (Project 253946) and CNPq (Project 476135/2013-3). RASV received a postdoctoral fellowship from CTIC-UNAM (CJIC/CTIC/0380/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Arroyo-Rodríguez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arroyo-Rodríguez, V., Saldaña-Vázquez, R.A., Fahrig, L. et al. Does forest fragmentation cause an increase in forest temperature?. Ecol Res 32, 81–88 (2017). https://doi.org/10.1007/s11284-016-1411-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-016-1411-6

Keywords

Navigation