Ecological Research

, Volume 31, Issue 4, pp 579–587 | Cite as

Can litter addition mediate plant productivity responses to increased precipitation and nitrogen deposition in a typical steppe?

  • Yue Shen
  • Wenqing Chen
  • Gaowen Yang
  • Xin Yang
  • Nan Liu
  • Xiao Sun
  • Jishan Chen
  • Yingjun Zhang
Original Article


Plant litter is a key component of grassland and plays a major role in terrestrial ecosystem processes. Global climate change has been shown to considerably alter litter inputs to soils, which may feed back to the grassland ecosystem responses to climate change. In order to explore whether litter addition could mediate above and belowground productivity responses to short-term increases in growing-season precipitation and nitrogen deposition, we conducted a two-year study on water, nitrogen and litter addition in Inner Mongolia grassland. After two years of treatments, our results showed that water, nitrogen, and litter addition increased aboveground biomass (AB) and belowground net primary productivity (BNPP). Besides, litter addition increased BNPP responses to water addition. These litter addition effects could be attributed to the influence of litter on soil moisture and soil nitrogen availability, ultimately increasing belowground water use efficiency (WUEBNPP) and plant nitrogen uptake (NUPBNPP). However, litter addition suppressed the aboveground biomass (AB) responses to nitrogen addition under ambient precipitation conditions by affecting soil moisture. In conclusion, our results suggest that ecosystem responses to short-term increases in growing-season precipitation and nitrogen deposition could be mediated by the increased litter input caused by climate change.


Litter Global change Productivity Resource use efficiency Leymus chinensis 



This study was supported by Modern Agro-industry Technology Research System (CARS-35) and National Natural Science Foundation of China (31472137). We thank Professor Taogetao Baoyin and Inner Mongolia University for providing the experimental facilities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11284_2016_1368_MOESM1_ESM.docx (175 kb)
Supplementary material 1 (DOCX 174 kb)


  1. Amatangelo KL, Dukes JS, Field CB (2008) Responses of a California annual grassland to litter manipulation. J Veg Sci 19:605–612. doi: 10.3170/2008-8-18415 CrossRefGoogle Scholar
  2. Bai Y, Wu J, Xing Q, Pan Q, Huang J, Yang D, Han X (2008) Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 89:2140–2153. doi: 10.1890/07-0992.1 CrossRefPubMedGoogle Scholar
  3. Bai Y et al (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biol 16:358–372. doi: 10.1111/j.1365-2486.2009.01950.x CrossRefGoogle Scholar
  4. Bai W, Guo D, Tian Q, Liu N, Cheng W, Li L, Zhang WH (2015) Differential responses of grasses and forbs led to marked reduction in below-ground productivity in temperate steppe following chronic N deposition. J Ecol 103:1570–1579. doi: 10.1111/1365-2745.12468 CrossRefGoogle Scholar
  5. Brueck H, Erdle K, Gao Y, Giese M, Zhao Y, Peth S, Lin S (2009) Effects of N and water supply on water use-efficiency of a semiarid grassland in Inner Mongolia. Plant Soil 328:495–505. doi: 10.1007/s11104-009-0128-5 CrossRefGoogle Scholar
  6. Burke IC, Lauenroth WK, Parton WJ (1997) Regional and temporal variation in net primary production and nitrogen mineralization in grasslands. Ecology 78:1330–1340CrossRefGoogle Scholar
  7. Chen SP, Bai YF, Zhang LX, Han XG (2005) Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environ Exp Bot 53:65–75. doi: 10.1016/j.envexpbot.2004.03.002 CrossRefGoogle Scholar
  8. Deutsch ES, Bork EW, Willms WD (2010) Soil moisture and plant growth responses to litter and defoliation impacts in Parkland grasslands. Agric Ecosyst Environ 135:1–9. doi: 10.1016/j.agee.2009.08.002 CrossRefGoogle Scholar
  9. Dukes JS et al (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3:1829–1837. doi: 10.1371/journal.pbio.0030319 CrossRefGoogle Scholar
  10. Facelli JM, Pickett STA (1991) Plant litter—its dynamics and effects on plant community structure. Bot Rev 57:1–32. doi: 10.1007/bf02858763 CrossRefGoogle Scholar
  11. Fahnestock JT, Detling JK (1999) Plant responses to defoliation and resource supplementation in the Pryor Mountains. J Range Manage 52:263–270. doi: 10.2307/4003689 CrossRefGoogle Scholar
  12. Gallaher RN, Weldon CO, Boswell FC (1976) Semiautomated procedure for total nitrogen in plant and soil samples. Soil Sci Soc Am J 40:887–889CrossRefGoogle Scholar
  13. Gao YZ, Giese M, Lin S, Sattelmacher B, Zhao Y, Brueck H (2008) Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant Soil 307:41–50. doi: 10.1007/s11104-008-9579-3 CrossRefGoogle Scholar
  14. Gao YZ, Chen Q, Lin S, Giese M, Brueck H (2011) Resource manipulation effects on net primary production, biomass allocation and rain-use efficiency of two semiarid grassland sites in Inner Mongolia, China. Oecologia 165:855–864. doi: 10.1007/s00442-010-1890-z CrossRefPubMedGoogle Scholar
  15. Gong XY, Chen Q, Lin S, Brueck H, Dittert K, Taube F, Schnyder H (2010) Tradeoffs between nitrogen- and water-use efficiency in dominant species of the semiarid steppe of Inner Mongolia. Plant Soil 340:227–238. doi: 10.1007/s11104-010-0525-9 CrossRefGoogle Scholar
  16. Harpole WS, Potts DL, Suding KN (2007) Ecosystem responses to water and nitrogen amendment in a California grassland. Global Change Biol 13:2341–2348. doi: 10.1111/j.1365-2486.2007.01447.x CrossRefGoogle Scholar
  17. Harrison KA, Bol R, Bardgett RD (2008) Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil Biol Biochem 40:228–237. doi: 10.1016/j.soilbio.2007.08.004 CrossRefGoogle Scholar
  18. Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285. doi: 10.1023/a:1026500810385 CrossRefGoogle Scholar
  19. He CE, Liu X, Fangmeier A, Zhang F (2007) Quantifying the total airborne nitrogen input into agroecosystems in the North China Plain. Agric Ecosyst Environ 121:395–400. doi: 10.1016/j.agee.2006.12.016 CrossRefGoogle Scholar
  20. Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293. doi: 10.1023/a:1006145306009 Google Scholar
  21. Hui DF, Jackson RB (2006) Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol 169:85–93. doi: 10.1111/j.1469-8137.2005.01569.x CrossRefPubMedGoogle Scholar
  22. IPCC (2013) IPCC WGI Fifth Assessment Report. Climate change 2013: The Physical Science Basis. Intergovernmental Panel on Climate ChangeGoogle Scholar
  23. Jin HM, Sun OJ, Liu JF (2010) Changes in soil microbial biomass and community structure with addition of contrasting types of plant litter in a semiarid grassland ecosystem. J Plant Ecol 3:209–217. doi: 10.1093/jpe/rtq001 CrossRefGoogle Scholar
  24. Knapp AK, Seastedt TR (1986) Detritus accumulation limits productivity of tallgrass prairie. Bioscience 36:662–668. doi: 10.2307/1310387 CrossRefGoogle Scholar
  25. Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291:481–484. doi: 10.1126/science.291.5503.481 CrossRefPubMedGoogle Scholar
  26. Kong DL, Lu XT, Jiang LL, Wu HF, Miao Y, Kardol P (2013) Extreme rainfall events can alter inter-annual biomass responses to water and N enrichment. Biogeosciences 10:8129–8138. doi: 10.5194/bg-10-8129-2013 CrossRefGoogle Scholar
  27. Li J, Lin S, Taube F, Pan Q, Dittert K (2011) Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant Soil 340:253–264. doi: 10.1007/s11104-010-0612-y CrossRefGoogle Scholar
  28. Li X, Niu J, Xie B (2013) Study on hydrological functions of litter layers in north China. PLoS ONE. doi: 10.1371/journal.pone.0070328 Google Scholar
  29. Liu P, Huang J, Han X, Sun OJ, Zhou Z (2006) Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China. Appl Soil Ecol 34:266–275. doi: 10.1016/j.apsoil.2005.12.009 CrossRefGoogle Scholar
  30. Liu Y, Li X, Zhang Q, Guo Y, Gao G, Wang J (2010) Simulation of regional temperature and precipitation in the past 50 years and the next 30 years over China. Quatern Int 212:57–63. doi: 10.1016/j.quaint.2009.01.007 CrossRefGoogle Scholar
  31. Liu Y, Pan Q, Zheng S, Bai Y, Han X (2012) Intra-seasonal precipitation amount and pattern differentially affect primary production of two dominant species of Inner Mongolia grassland. Acta Oecol 44:2–10. doi: 10.1016/j.actao.2012.01.005 CrossRefGoogle Scholar
  32. Lu XT, Dijkstra FA, Kong DL, Wang ZW, Han XG (2014) Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland. Sci Rep-UK 4:1–7. doi: 10.1038/srep04817 Google Scholar
  33. Ma LN, Huang WW, Guo CY, Wang RZ, Xiao CW (2012) Soil microbial properties and plant growth responses to carbon and water addition in a temperate steppe: The Importance of Nutrient Availability. PLoS ONE. doi: 10.1371/journal.pone.0035165 Google Scholar
  34. Ma L, Guo C, Xin X, Yuan S, Wang R (2013) Effects of belowground litter addition, increased precipitation and clipping on soil carbon and nitrogen mineralization in a temperate steppe. Biogeosciences 10:7361–7372CrossRefGoogle Scholar
  35. Niu S et al (2009) Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems 12:915–926. doi: 10.1007/s10021-009-9265-1 CrossRefGoogle Scholar
  36. Norby RJ et al (2002) Net primary productivity of a CO2-enriched deciduous forest and the implications for carbon storage. Ecol Appl 12:1261–1266. doi: 10.2307/3099969 Google Scholar
  37. Sato Y, Kumagai T, Kume A, Otsuki K, Ogawa S (2004) Experimental analysis of moisture dynamics of litter layers - the effects of rainfall conditions and leaf shapes. Hydrol Process 18:3007–3018. doi: 10.1002/hyp.5746 CrossRefGoogle Scholar
  38. Sayer EJ (2006) Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81:1–31. doi: 10.1017/s1464793105006846 CrossRefPubMedGoogle Scholar
  39. St Clair SB, Sudderth EA, Castanha C, Torn MS, Ackerly DD (2009) Plant responsiveness to variation in precipitation and nitrogen is consistent across the compositional diversity of a California annual grassland. J Veg Sci 20:860–870CrossRefGoogle Scholar
  40. Weltzin JF et al (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53:941–952. doi:10.1641/0006-3568(2003)053[0941:atrote];2Google Scholar
  41. Wu Z, Dijkstra P, Koch GW, Penuelas J, Hungate BA (2011) Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biol 17:927–942. doi: 10.1111/j.1365-2486.2010.02302.x CrossRefGoogle Scholar
  42. Xiao C, Guenet B, Zhou Y, Su J, Janssens IA (2015) Priming of soil organic matter decomposition scales linearly with microbial biomass response to litter input in steppe vegetation. Oikos 124:649–657. doi: 10.1111/oik.01728 CrossRefGoogle Scholar
  43. Xu S, Liu LL, Sayer EJ (2013a) Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments. Biogeosciences 10:7423–7433. doi: 10.5194/bg-10-7423-2013 CrossRefGoogle Scholar
  44. Xu X, Sherry RA, Niu S, Li D, Luo Y (2013b) Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Global Change Biol 19:2753–2764. doi: 10.1111/gcb.12248 CrossRefGoogle Scholar
  45. Yang H, Li Y, Wu M, Zhang ZHE, Li L, Wan S (2011) Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Global Change Biol 17:2936–2944. doi: 10.1111/j.1365-2486.2011.02423.x CrossRefGoogle Scholar
  46. Yu FH, Dong M, Zhang CY (2002) Intraclonal resource sharing and functional specialization of ramets in response to resource heterogeneity in three stoloniferous herbs. Acta Bot Sin 44:468–473Google Scholar
  47. Yuan ZY, Li LH (2007) Soil water status influences plant nitrogen use: a case study. Plant Soil 301:303–313. doi: 10.1007/s11104-007-9450-y CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2016

Authors and Affiliations

  • Yue Shen
    • 1
  • Wenqing Chen
    • 2
  • Gaowen Yang
    • 3
  • Xin Yang
    • 1
  • Nan Liu
    • 1
  • Xiao Sun
    • 3
  • Jishan Chen
    • 1
    • 4
  • Yingjun Zhang
    • 1
  1. 1.Department of Grassland ScienceChina Agricultural UniversityBeijingChina
  2. 2.Department of Grassland ScienceNorthwest A&F UniversityYanglingChina
  3. 3.College of Agro-grassland ScienceNanjing Agricultural UniversityNanjingChina
  4. 4.Institute of Prata Cultural ScienceHeilongjiang Academy of Agricultural ScienceHarbinChina

Personalised recommendations