Ecological Research

, Volume 31, Issue 4, pp 495–504 | Cite as

Constant tree species richness along an elevational gradient of Mt. Bokor, a table-shaped mountain in southwestern Cambodia

  • Meng Zhang
  • Shuichiro Tagane
  • Hironori Toyama
  • Tsuyoshi Kajisa
  • Phourin Chhang
  • Tetsukazu Yahara
Biodiversity in Asia


Some previous studies along an elevational gradient on a tropical mountain documented that plant species richness decreases with increasing elevation. However, most of studies did not attempt to standardize the amount of sampling effort. In this paper, we employed a standardized sampling effort to study tree species richness along an elevational gradient on Mt. Bokor, a table-shaped mountain in southwestern Cambodia, and examined relationships between tree species richness and environmental factors. We used two methods to record tree species richness: first, we recorded trees taller than 4 m in 20 uniform plots (5 × 100 m) placed at 266–1048-m elevation; and second, we collected specimens along an elevational gradient from 200 to 1048 m. For both datasets, we applied rarefaction and a Chao1 estimator to standardize the sampling efforts. A generalized linear model (GLM) was used to test the relationship of species richness with elevation. We recorded 308 tree species from 20 plots and 389 tree species from the general collections. Species richness observed in 20 plots had a weak but non-significant correlation with elevation. Species richness estimated by rarefaction or Chao1 from both data sets also showed no significant correlations with elevation. Unlike many previous studies, tree species richness was nearly constant along the elevational gradient of Mt. Bokor where temperature and precipitation are expected to vary. We suggest that the table-shaped landscape of Mt. Bokor, where elevational interval areas do not significantly change between 200 and 900 m, may be a determinant of this constant species richness.


Elevational gradient Rarefaction Sampling bias Species richness pattern Tropical forest 


  1. Aiba S, Kitayama K (1999) Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol 140:139–157. doi:10.1023/A:1009710618040 CrossRefGoogle Scholar
  2. Barry RG (2013) Mountain weather and climate. Routledge, LondonGoogle Scholar
  3. Carpenter C (2005) The environmental control of plant species density on a Himalayan elevation gradient. J Biogeogr 32:999–1018. doi:10.1111/j.1365-2699.2005.01249.x CrossRefGoogle Scholar
  4. Chao A, Chazdon RL, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159. doi:10.1111/j.1461-0248.2004.00707.x CrossRefGoogle Scholar
  5. Colwell RK, Chang XM, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecol 85:2717–2727. doi:10.1890/03-0557 CrossRefGoogle Scholar
  6. Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5:3–21. doi:10.1093/jpe/rtr044 CrossRefGoogle Scholar
  7. Colwell RK, Hurtt GC (1994) Nonbiological gradients in species richness and a spurious rapoport effect. Am Nat 144:570–595. doi:10.1086/285695 CrossRefGoogle Scholar
  8. Colwell RK (2013) EstimateS: Statistical estimation of species richness and shared species from samples, version 9.1.0. URL
  9. Currie DJ, Kerr JT (2008) Tests of the mid-domain hypothesis: a review of the evidence. Ecol Monogr 78:3–18. doi:10.1890/06-1302.1 CrossRefGoogle Scholar
  10. Fortin M, Dale M, Hoef J (2002) Spatial analysis in ecology. Encycl Environ 4:2051–2058. doi:10.1002/9780470057339.vas039 Google Scholar
  11. Francis AP, Currie DJ (2003) A globally consistent richness-climate relationship for angiosperms. Am Nat 161:523–536. doi:10.1086/368223 CrossRefPubMedGoogle Scholar
  12. Gentry AH, Churchill SP, Balslev H, Forero E, Luteyn JL (1995) Patterns of diversity and floristic composition in Neotropical montane forests. In: Biodiversity and conservation of Neotropical montane forests. Proceedings of a symposium, New York Botanical Garden, 21–26 June 1993. New York Botanical Garden, pp 103–126Google Scholar
  13. Grismer LL, Thy N, Thou C, Grismer JL (2008) Checklist of the amphibians and reptiles of the Cardamom region of southwestern Cambodia. Cambodian J Nat Hist 2008:12–28Google Scholar
  14. Grytnes JA (2003) Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography 26:291–300. doi:10.1034/j.1600-0587.2003.03358.x CrossRefGoogle Scholar
  15. Grytnes JA, Beaman JH (2006) Elevational species richness patterns for vascular plants on Mount Kinabalu, Borneo. J Biogeogr 33:1838–1849. doi:10.1111/j.1365-2699.2006.01554.x CrossRefGoogle Scholar
  16. Guo Q, Kelt DA, Sun Z, Liu H, Hu L, Ren H, Wen J (2013) Global variation in elevational diversity patterns. Sci Rep. doi:10.1038/srep03007 Google Scholar
  17. Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecol 84:3105–3117. doi:10.1890/03-8006 CrossRefGoogle Scholar
  18. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276 CrossRefGoogle Scholar
  19. Hubbell SP, He F, Condit R, Borda-de-Agua L, Kellner J, Ter Steege H (2008) Colloquium paper: how many tree species are there in the Amazon and how many of them will go extinct? Proc Natl Acad Sci USA 105(Suppl):11498–11504. doi:10.1073/pnas.0801915105 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe Version 4. Available from the CGIAR-CSI SRTM 90 m Database. URL
  21. Kerkhoff AJ, Moriarty PE, Weiser MD (2014) The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc Natl Acad Sci USA 111:8125–8130. doi:10.1073/pnas.1308932111 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kluge J, Kessler M, Dunn RR (2006) What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Glob Ecol Biogeogr 15:358–371. doi:10.1111/j.1466-822X.2006.00223.x CrossRefGoogle Scholar
  23. Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104:5925–5930. doi:10.1073/pnas.0608361104 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574. doi:10.1016/j.tree.2007.09.006 CrossRefPubMedGoogle Scholar
  25. Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13. doi:10.1046/j.1466-822x.2001.00229.x CrossRefGoogle Scholar
  26. McCain CM (2007) Area and mammalian elevational diversity. Ecol 88:76–86. doi:10.1890/0012-9658(2007)88[76:AAMED]2.0.CO;2Google Scholar
  27. McCain CM, Grytnes JA (2010) Elevational gradient of Species Richness. Wiley, Chichester, UK. URL doi: 10.1002/9780470015902.a0022548
  28. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. CRC Press, LondonCrossRefGoogle Scholar
  29. O’Brien EM, Whittaker RJ, Field R (1998) Climate and woody plant diversity in southern Africa: relationships at species, genus and family levels. Ecography 21:495–509. doi:10.1111/j.1600-0587.1998.tb00441.x CrossRefGoogle Scholar
  30. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinforma 20:289–290. doi:10.1093/bioinformatics/btg412 CrossRefGoogle Scholar
  31. Proctor J, Anderson JM, Fogden SCL, Vallack HW (1983) Ecological Studies in Four Contrasting Lowland Rain Forests in Gunung Mulu National Park, Sarawak: II. Litterfall, Litter Standing Crop and Preliminary Observations on Herbivory. J Ecol 71:261–283. doi:10.2307/2259976 CrossRefGoogle Scholar
  32. Quantum GIS Development Team (2014) Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. version 2.4.0. URL
  33. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  34. Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 2:200–205. doi:10.1111/j.1600-0587.1995.tb00341.x CrossRefGoogle Scholar
  35. Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239. doi:10.1111/j.1461-0248.2004.00701.x CrossRefGoogle Scholar
  36. Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  37. Rundel PW, Middleton DJ, Patterson MT, Monyrak M (2003) Structure and ecological function in a tropical montane sphagnum bog of the elephant mountains, Bokor National Park, Cambodia. Nat Hist Bull 51:185–196Google Scholar
  38. Sanchez-Gonzalez A, Lopez-Mata L (2005) Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico. Divers Distrib 11:567–575. doi:10.1111/j.1366-9516.2005.00186.x CrossRefGoogle Scholar
  39. Slik JWF, Raes N, Aiba SI, Cannon CH, Meijaard E, Nagamasu H, Nilus R, Paoli G, Poulsen AD, Sheil D, Suzuki E, Van Valkenburg JLCH, Webb C, Wilkie P, Wulffraat S (2009) Environmental correlates for tropical tree diversity and distribution patterns in Borneo. Divers Distrib 15:523–532. doi:10.1111/j.1472-4642.2009.00557.x CrossRefGoogle Scholar
  40. Stuart BL, Emmett DA (2006) A Collection of Amphibians and Reptiles from the Cardamom Mountains, Southwestern Cambodia. Fieldiana Zool 109:1–27CrossRefGoogle Scholar
  41. Tagane S, Toyama H, Chhang P, Nagamasu H, Yahara T (2015) Flora of Bokor National Park, Cambodia & #x0399;: Thirteen New species and One Change in Status. Acta Phytotax Geobot 66:95–135Google Scholar
  42. Toyama H, Kajisa T, Tagane S, Mase K, Chhang P, Samreth V, Ma V, Sokh H, Ichihashi R, Onoda Y, Mizoue N, Yahara T (2015) Effects of logging and recruitment on community phylogenetic structure in 32 permanent forest plots of Kampong Thom, Cambodia. Philos Trans R Soc B Biol Sci 370:20140008. doi:10.1098/rstb.2014.0008 CrossRefGoogle Scholar
  43. Whitmore TC (1999) Arguments on the forest frontier. Biodivers Conserv 8:865–868. doi:10.1023/A:1008836306030 CrossRefGoogle Scholar
  44. Yahara T, Akasaka M, Hirayama H, Ichihashi R, Tagane S, Toyama H, Tsujino R (2012) Strategies to observe and assess changes of terrestrial biodiversity in the Asia-Pacific regions. Biodivers Obs Netw Asia Pacific Reg. doi:10.1007/978-4-431-54032-8 Google Scholar
  45. Zobel M, van der Maarel E, Dupré C (1998) Species pool: the concept, its determination and significance for community restoration. Appl Veg Sci 1:55–66. doi:10.2307/1479085 CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2016

Authors and Affiliations

  • Meng Zhang
    • 1
  • Shuichiro Tagane
    • 2
  • Hironori Toyama
    • 2
  • Tsuyoshi Kajisa
    • 2
  • Phourin Chhang
    • 3
  • Tetsukazu Yahara
    • 1
    • 2
  1. 1.Graduate School of Systems Life SciencesKyushu UniversityFukuokaJapan
  2. 2.Center for Asian Conservation EcologyKyushu UniversityFukuokaJapan
  3. 3.Department of Forestry Management and Community Forestry, Forestry AdministrationMinistry of Agriculture Forestry and FisheriesPhnom PenhCambodia

Personalised recommendations