Skip to main content
Log in

Pastoralist disturbance effects on Himalayan marmot foraging and vigilance activity

  • Original Article
  • Published:
Ecological Research

Abstract

Pastoralism is pervasive and has a long history across the rangelands of Trans-Himalaya. Disturbance associated with pastoralism can influence the behaviour of wild animals; hence, it is important to better understand its effects on wild animal behaviour. We compared the activity budget of the Himalayan marmot (Marmota himalayana) between areas experiencing both high and low levels of pastoralism, in the Upper Mustang region in Nepal. Scan sampling was used to collect diurnal activity budget data on adult marmots, whereas 2 min focal observations were made on foraging marmots to assess vigilance during foraging. Contrary to our prediction, there was no significant difference between areas of high and low pastoralism in terms of foraging behaviour. However, the vigilance activity of marmots was significantly influenced by the extent of disturbances associated with pastoralism. Marmots scanned the surroundings more often while foraging and spent more time scanning in high pastoralism sites as compared to marmots in low pastoralism sites. Although we found no direct negative effects of pastoralism on foraging time, marmots shifted the time of day when they foraged. This study suggests that marmots adjust their vigilance behaviour according to the environmental conditions in which they occur. These findings have important implications for the conservation of marmots in the wake of increasing pastoral activities and consequent increases in human-wildlife conflict in Nepal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 49:227–267

    Article  PubMed  CAS  Google Scholar 

  • Armitage KB (2000) The evolution, ecology, and systematics of marmots. Oecol Mont 9:1–18

    Google Scholar 

  • Armitage KB (2013) Climate change and the conservation of marmots. Nat Sci 5:36–43

    Google Scholar 

  • Armitage KB (2014) Marmot biology: sociality, individual fitness, and population dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Armitage KB, Chiesura Corona M (1994) Time and wariness in yellow-bellied marmots. J Mt Ecol 2:1–8

    Google Scholar 

  • Armitage KB, Salsbury CM, Barthelmess EL, Gray RC, Kovach A (1996) Population time budget for the yellow-bellied marmot. Ethol Ecol Evol 8:67–95

    Article  Google Scholar 

  • Aryal A, Hopkins JB, Raubenheimer D, Ji W, Brunton D (2012) Distribution and diet of brown bears in the Upper Mustang region, Nepal. Ursus 23:231–236

    Article  Google Scholar 

  • Aryal A, Brunton D, Pandit R, Kumar Rai R, Shrestha UB, Lama N, Raubenheimer D (2013) Rangelands, conflicts, and society in the Upper Mustang region, Nepal. Mt Res Dev 33:11–18

    Article  Google Scholar 

  • Aryal A, Brunton D, Raubenheimer D (2014a) Impact of climate change on human-wildlife-ecosystem interactions in the Trans-Himalaya region of Nepal. Theor Appl Climatol 115:517–529

    Article  Google Scholar 

  • Aryal A, Brunton D, Ji W, Barraclough RK, Raubenheimer D (2014b) Human–carnivore conflict: ecological and economical sustainability of predation on livestock by snow leopard and other carnivores in the Himalaya. Sustain Sci 9:321–329

    Article  Google Scholar 

  • Aryal A, Brunton D, Ji W, Karmacharya D, McCarthy T, Bencini R, Raubenheimer D (2014c) Multipronged strategy including genetic analysis for assessing conservation options for the snow leopard in the central Himalaya. J Mammal 95:871–881

    Article  Google Scholar 

  • Aryal A, Brunton D, Ji W, Rothman J, Coogan SCP, Adhikari B, Su J, Raubenheimer D (2015) Habitat, diet, macronutrient, and fiber balance of Himalayan marmot (Marmota himalayana) in the Central Himalaya, Nepal. J Mammal 96:308–316

    Article  Google Scholar 

  • Bagchi S, Namgail T, Ritchie ME (2006) Small mammalian herbivores as mediators of plant community dynamics in the high-altitude arid rangelands of Trans-Himalaya. Biol Conserv 127:438–442

    Article  Google Scholar 

  • Barash DP (1980) The influence of reproductive status on foraging by Hoary Marmots (Marmota caligata). Behav Ecol Sociobiol 7:201–205

    Article  Google Scholar 

  • Barton K (2014) MuMIn: multi-model inference. R package version 1.10.5. http://CRAN.R-project.org/package=MuMIn. Accessed 18 Dec 2014

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4. Accessed 18 Dec 2014

  • Beale CM, Monaghan P (2004) Human disturbance: people as predation-free predators? J Appl Ecol 41:335–343

    Article  Google Scholar 

  • Bednekoff PA, Blumstein DT (2009) Peripheral obstructions influence marmot vigilance: integrating observational and experimental results. Behav Ecol 20:1111–1117

    Article  Google Scholar 

  • Berryman AA, Hawkins BA (2006) The refuge as an integrating concept in ecology and evolution. Oikos 115:192–196

    Article  Google Scholar 

  • Bertolino S, Mazzoglio PJ, Vaiana M, Currado I (2004) Activity budget and foraging behavior of introduced Callosciurus finlaysonii (Rodentia, Sciuridae) in Italy. J Mammal 85:254–259

    Article  Google Scholar 

  • Bishop CM (1999) The maximum oxygen consumption and aerobic scope of birds and mammals: getting to the heart of the matter. Proc R Soc Lond B Biol Sci 266:2275–2281

    Article  CAS  Google Scholar 

  • Blumstein DT (1996) How much does social group size influence golden marmot vigilance? Behaviour 133:1133–1151

    Article  Google Scholar 

  • Blumstein DT (1998) Quantifying predation risk for refuging animals: a case study with golden marmots. Ethol 104:501–516

    Article  Google Scholar 

  • Blumstein DT, Daniel JC (2007) Quantifying behavior the JWatcher way. Sinaur, Sunderland

    Google Scholar 

  • Blumstein DT, Daniel JC, Bryant AA (2001) Anti-predator behavior of Vancouver Island marmots: using congeners to evaluate abilities of a critically endangered mammal. Ethol 107:1–14

    Article  Google Scholar 

  • Blumstein DT, Runyan A, Seymour M, Nicodemus A, Ozgul A, Ransler F, Daniel JC (2004) Locomotor ability and wariness in yellow-bellied marmots. Ethol 110:615–634

    Article  Google Scholar 

  • Blumstein DT, Ferando E, Stankowich T (2009) A test of the multipredator hypothesis: yellow-bellied marmots respond fearfully to the sight of novel and extinct predators. Anim Behav 78:873–878

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Brilot BO, Bateson M, Nettle D, Whittingham MJ, Read JCA (2012) When is general wariness favored in avoiding multiple predator types? Am Nat 179:e180–e195

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Caro T (2005) Antipredator defenses in birds and mammals. University of Chicago Press, Chicago

    Google Scholar 

  • Childress MJ, Lung MA (2003) Predation risk, gender and the group size effect: does elk vigilance depend upon the behaviour of conspecifics? Anim Behav 66:389–398

    Article  Google Scholar 

  • Christiansen F, Rasmussen MH, Lusseau D (2013) Inferring activity budgets in wild animals to estimate the consequences of disturbances. Behav Ecol 24:1415–1425

    Article  Google Scholar 

  • Cingolani AM, Renison D, Tecco P, Gurvich D, Cabido M (2008) Predicting cover types in a mountain range with long evolutionary grazing history: a GIS approach. J Biogeogr 35:538–551

    Article  Google Scholar 

  • Ciuti S, Northrup JM, Muhly TB, Simi S, Musiani M, Pitt JA, Boyce MS (2012) Effects of humans on behaviour of wildlife exceed those of natural predators in a landscape of fear. PLoS One 7:e50611

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Crawford BA, Hickman CR, Luhring TM (2012) Testing the threat-sensitive hypothesis with predator familiarity and dietary specificity. Ethol 118:41–48

    Article  Google Scholar 

  • Creel S, Fox JE, Hardy A, Sands J, Garrott B, Peterson RO (2002) Snowmobile activity and glucocorticoid stress responses in wolves and elk. Conserv Biol 16:809–814

    Article  Google Scholar 

  • Dark J (2005) Annual lipid cycles in hibernators: integration of physiology and behavior. Annu Rev Nutr 25:469–497

    Article  PubMed  CAS  Google Scholar 

  • Davidson AD, Detling JK, Brown JH (2012) Ecological roles and conservation challenges of social, burrowing, herbivorous mammals in the world’s grasslands. Front Ecol Environ 10:477–486

    Article  Google Scholar 

  • Devkota BP, Silwal T, Kolejka J (2013) Prey density and diet of snow leopard (Uncia Uncia) in Shey Phoksundo National Park,Nepal. Appl Ecol Environ Sci 1:55–60

    Google Scholar 

  • Dorji T, Totland O, Moe SR (2013) Are droppings, distance from pastoralist camps, and pika burrows good proxies for local grazing pressure? Rangel Ecol Manag 66:26–33

    Article  Google Scholar 

  • Ellenberg U, Mattern T, Seddon PJ, Jorquera GL (2006) Physiological and reproductive consequences of human disturbance in Humboldt penguins: the need for species-specific visitor management. Biol Conserv 133:95–106

    Article  Google Scholar 

  • Fernández-Juricic E, Beauchamp G, Bastain B (2007) Group-size and distance-to-neighbour effects on feeding and vigilance in brown-headed cowbirds. Anim Behav 73:771–778

    Article  Google Scholar 

  • Ferrari C, Bogliani G, von Hardenberg A (2009) Alpine marmots (Marmota marmota) adjust vigilance behaviour according to environmental characteristics of their surrounding. Ethol Ecol Evol 21:355–364

    Article  Google Scholar 

  • Fortin D, Boyce MS, Merrill EH, Fryxell JM (2004a) Foraging costs of vigilance in large mammalian herbivores. Oikos 107:172–180

    Article  Google Scholar 

  • Fortin D, Boyce MS, Merrill EH (2004b) Multi-tasking by mammalian herbivores: overlapping processes during foraging. Ecology 85:2312–2322

    Article  Google Scholar 

  • French SS, Gonzalez-Suarez M, Young JK, Durham S, Gerber LR (2011) Human disturbance influences reproductive success and growth rate in California sea lions (Zalophus californianus). PLoS One 6:1–8

    Article  Google Scholar 

  • Frid A, Dill L (2002) Human-caused disturbance stimuli as a form of predation risk. Ecol Soc 6:11

    Google Scholar 

  • Fritz H, Guillemain M, Durant D (2002) The cost of vigilance for intake rate in the mallard (Anas platyrhynchos): an approach through foraging experiments. Ethol Ecol Evol 14:91–97

    Article  Google Scholar 

  • Griffin SC, Valois T, Taper ML, Mills LS (2007) Effects of tourists on behavior and demography of olympic marmots. Conserv Biol 21:1070–1081

    Article  PubMed  Google Scholar 

  • Hammer O, Harper D, Ryan P (2001) Past: paleontological statistics software package for education and data analysis. Paleontol Electron 4:1–9

    Google Scholar 

  • Hanya G (2004) Seasonal variations in the activity budget of Japanese macaques in the coniferous forest of Yakushima: effects of food and temperature. Am J Primatol 63:165–177

    Article  PubMed  Google Scholar 

  • Houston AI, Prosser E, Sans E (2012) The cost of disturbance: a waste of time and energy? Oikos 121:597–604

    Article  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Ikuta LA, Blumstein DT (2003) Do fences protect birds from human disturbance? Biol Conserv 112:447–452

    Article  Google Scholar 

  • Inouye DW, Barr B, Armitage KB, Inouye BD (2000) Climate change is affecting altitudinal migrants and hibernating species. PNAS USA 97:1630–1633

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Johns DW, Armitage KB (1979) Behavioral ecology of alpine yellow-bellied marmots. Behav Ecol Sociobiol 5:133–157

    Article  Google Scholar 

  • Kuhn KM, Vander Wall SB (2008) Linking summer foraging to winter survival in yellow pine chipmunks (Tamias amoenus). Oecologia 157:349–360

    Article  PubMed  Google Scholar 

  • Le Berre M, Ramousse R (2007) Bibliographia marmotarum: an update. In: Esipov AV, Bykova EA, Brandler OV, Ramousse R, Vashetko EV (eds) The marmots of Eurasia: origin and current status. International Marmot Network, Tashkent, pp 64–71

    Google Scholar 

  • Lea AJ, Blumstein DT (2011) Age and sex influence marmot antipredator behavior during periods of heightened risk. Behav Ecol Sociobiol 65:1525–1533

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenti Boreo D (2003) Spotting behaviour and daily activity cycle in the Alpine Marmots (Marmota marmota): a role for infant guarding. Oecol Mont 12:1–6

    Google Scholar 

  • Li C, Monclúsb R, Terry R, Maulc L, Jianga Z, Blumstein DT (2011) Quantifying human disturbance on antipredator behavior and flush initiation distance in yellow-bellied marmots. Appl Anim Behav Sci 129:146–152

    Article  Google Scholar 

  • Lima SL, Bednekoff PA (1999) Back to the basics of antipredatory vigilance: can nonvigilant animals detect attack? Anim Behav 58:537–543

    Article  PubMed  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640

    Article  Google Scholar 

  • Lusseau D (2004) The hidden cost of tourism: detecting long-term effects of tourism using behavioral information. Ecol Soc 9:2

    Google Scholar 

  • Makowska IJ, Kramer DL (2007) Vigilance during food handling in grey squirrels (Sciurus carolinensis). Anim Behav 74:153–158

    Article  Google Scholar 

  • Maldonado-Chaparro AA, Martin JGA, Armitage KB, Oli MK, Blumstein DT (2015) Environmentally induced phenotypic variation in wild yellow-bellied marmots. J Mammal 96:269–278

    Article  Google Scholar 

  • Martin P, Bateson PPG (2007) Measuring behaviour: an introductory guide. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Molur S, Shrestha TK (2008) Marmota himalayana. IUCN Red List of Threatened Species. Version 2014.3 http://www.iucnredlist.org. Accessed 11 Oct 2014

  • Mundry R, Sommer C (2007) Discriminant function analysis with nonindependent data: consequences and an alternative. Anim Behav 74:965–976

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Method Ecol Evol 4:133–142

    Article  Google Scholar 

  • Namgail T, Fox JL, Bhatnagar YV (2007) Habitat shift and time budget of the Tibetan argali: the influence of livestock grazing. Ecol Res 22:25–31

    Article  Google Scholar 

  • Neuhaus P, Mainini B (1998) Reactions and adjustment of adult and young alpine marmots Marmota marmota to intense hiking activities. Wildl Biol 4:119–123

    Google Scholar 

  • Nikol’skii AA, Ulak A (2006) Key factors determining the ecological niche of the Himalayan marmot (Marmota himalayana Hodgson, 1841). Rus J Ecol 37:46–52

    Article  Google Scholar 

  • Nikol’skii AA, Ulak A (2007) The Ecology of the Himalayan marmot (Marmota himalayana Hodgson, 1841) in Nepal. In: Esipov AV, Bykova EA, Brandler OV, Ramousse R, Vashetko EV (eds) The marmots of Eurasia: origin and current status. International Marmot Network, Tashkent, pp 101–107

    Google Scholar 

  • NTNC (2008) Sustainable development plan of Mustang (2008–2013). National Trust for Nature Conservation, Kathmandu

    Google Scholar 

  • Ohba H, Iokowa Y, Sharma LR (2008) Flora of Mustang,Nepal. Tokyo, Kodansha Scientific Ltd

    Google Scholar 

  • Ozgul A, Childs DZ, Oli MK, Armitage KB, Blumstein DT, Olson LE, Tuljapurkar S, Coulson T (2010) Coupled dynamics of body mass and population growth in response to environmental change. Nature 466:482–485

    Article  PubMed  CAS  Google Scholar 

  • Pangle WM, Holekamp KE (2010) Lethal and nonlethal anthropogenic effects on spotted hyenas in the Masai Mara National Reserve. J Mammal 91:154–164

    Article  Google Scholar 

  • Paudel KP, Andersen P (2010) Assessing rangeland degradation using multi temporal satellite images and grazing pressure surface model in Upper Mustang, Trans Himalaya, Nepal. Remote Sens Environ 114:1845–1855

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer, New York

    Book  Google Scholar 

  • Pokharel A, Chetri M (2006) Traditional grazing system and seasonal pasture use in Upper Mustang,Nepal. Our Nat 4:29–41

    Google Scholar 

  • Poudel BS, Spooner PG, Matthews A (2015) Temporal shift in activity patterns of Himalayan marmots in relation to pastoralism. Behav Ecol 26:1345–1351

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 2 Sept 2014

  • Sasaki T, Okubo S, Okayasu T, Jamsran U, Ohkuro T, Takeuchi K (2009) Management applicability of the intermediate disturbance hypothesis across Mongolian rangeland ecosystems. Ecol Appl 19:423–432

    Article  PubMed  Google Scholar 

  • Schaller GB (1977) Mountain monarchs: wild sheep and goats of the Himalaya. University of Chicago Press, Chicago

    Google Scholar 

  • Semenov Y, Louis S, Giboulet O, Ramousse R (2002) Accommodation behaviour of alpine marmot (Marmota marmota, Linne 1758) under direct anthropogenic influence. In: Rumiantsev VY (ed) KB Armitage. Holartic marmots as a factor of biodiversity ABF Publishing House, Moscow, pp 358–362

    Google Scholar 

  • Shrestha R, Wegge P (2008) Wild sheep and livestock in Nepal Trans-Himalaya: coexistence or competition? Environ Conserv 35:125–136

    Article  Google Scholar 

  • Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS One 7:e36741

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sih A (2013) Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. Anim Behav 85:1077–1088

    Article  Google Scholar 

  • Smith AT, Xie Y, Hoffmann RS, Lunde D, MacKinnon J, Wilson DE, Wozencraft WC, Gemma F (2010) A guide to the mammals of China. Princeton University Press, New Jersey

    Book  Google Scholar 

  • Strasser EH, Heath JA (2013) Reproductive failure of a human-tolerant species, the American kestrel, is associated with stress and human disturbance. J Appl Ecol 50:912–919

    Article  Google Scholar 

  • Tafani M, Cohas A, Bonenfant C, Gaillard J-M, Allainé D (2012) Decreasing litter size of marmots over time: a life history response to climate change? Ecology 94:580–586

    Article  Google Scholar 

  • Taulman JF (1990) Late summer activity patterns in hoary marmots. Northwest Nat 71:21–26

    Article  Google Scholar 

  • Treves A (2000) Theory and method in studies of vigilance and aggregation. Anim Behav 60:711–722

    Article  PubMed  Google Scholar 

  • Tuomainen U, Candolin U (2011) Behavioural responses to human-induced environmental change. Biol Rev 86:640–657

    Article  PubMed  Google Scholar 

  • Unck C, Waterman J, Verburgt L, Bateman P (2009) Quantity versus quality: how does level of predation threat affect cape ground squirrel vigilance? Anim Behav 78:625–632

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Book  Google Scholar 

  • Verdolin JL (2006) Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behav Ecol Sociobiol 60:457–464

    Article  Google Scholar 

  • Walker BG, Dee Boersma P, Wingfield JC (2006) Habituation of adult Magellanic penguins to human visitation as expressed through behavior and corticosterone secretion. Conserv Biol 20:146–154

    Article  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Method Ecol Evol 1:3–14

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Iain R Taylor and Hem S Baral for their helpful advice during the design of this study. We also thank Roger Mundry for his statistical advice and Gary Luck for his comments on an earlier draft of this manuscript. We thank research assistants Prabin Shrestha, Mahesh Neupane, Shankar Tripathi, and Thokme Lowa for their help with data collection. A special thanks to the community of the Upper Mustang and staffs at ACAP-Lhomanthang Sector Office who provided generous hospitality during field work. This study was supported by a post graduate scholarship from Charles Sturt University (to BSP) and grant from Holsworth Wildlife Research Endowment (CT#22178). This study was conducted under an approved protocol by the Animal Care and Ethics Committee of the Charles Sturt University, Australia (Protocol No. 13/013), and research permit from National Trust for Nature Conservation/Annapurna Conservation Area Project, Nepal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buddi S. Poudel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 125 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poudel, B.S., Spooner, P.G. & Matthews, A. Pastoralist disturbance effects on Himalayan marmot foraging and vigilance activity. Ecol Res 31, 93–104 (2016). https://doi.org/10.1007/s11284-015-1315-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-015-1315-x

Keywords

Navigation