Skip to main content
Log in

Drivers of bacterial beta diversity in two temperate forests

  • Original Article
  • Published:
Ecological Research

Abstract

Although the consequences of changes in microbial diversity have received increasing attention, our understanding of processes that drive spatial variation in microbial diversity remains limited. In this study, we sampled bacterial communities in early and late successional temperate forests in Northeast China, and used distance-based redundancy analysis to examine how different processes influence bacterial beta diversity and phylogeny-based beta diversity using the Bray–Curtis and UniFrac metrics, respectively. After controlling for sampling effects, bacterial beta diversity in both forests was higher than expected by chance, which indicates that the bacterial community showed strong intraspecific aggregation. Both environmental filtering and dispersal limitation contributed to bacterial beta diversity and phylogeny-based beta diversity in the two forests. However, the relative importance of these different processes varied between the two forests. In the early successional forest, dispersal limitation played a dominant role in structuring the bacterial community, whereas the effects of environmental filtering were more important in the late successional forest. Our study revealed that bacterial beta diversity and phylogeny-based beta diversity in forest communities from the same region are regulated by different forces and that the relative importance of different forces varies over succession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  • Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University, Oxford

    Google Scholar 

  • Beck S, Powell JR, Drigo B, Gairney JWG, Anderson IC (2015) The role of stochasticity differs in the assembly of soil- and root-associated fungal communities. Soil Biol Biochem 80:18–25

    Article  CAS  Google Scholar 

  • Bezemer TM, Fountain M, Barea J, Christensen S, Dekker S, Duyts H, Van Hal R, Harvey JA, Hedlund K, Maraun M, Mikola J, Mladenov AG, Robin C, De Ruiter P, Scheu S, Setälä H, Šmilauer P, Van der Putten WH (2010) Divergent composition but similar function of soil food webs of individual plants: plant species and community effects. Ecology 91:3027–3036

    Article  PubMed  CAS  Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832

    Article  Google Scholar 

  • Cadotte MW (2007) Concurrent niche and neutral processes in the competition-colonization model of species coexistence. Proc R Soc B 274:2739–2744

    Article  PubMed  PubMed Central  Google Scholar 

  • Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Phil Trans R Soc B 366:2351–2363

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu H, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P (2010) Soil bacterial diversity in the Arctic is fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006

    Article  PubMed  CAS  Google Scholar 

  • DeCaceres M, Legendre P, Valencia R, Cao M, Chang L, Chuyong G, Condit R, Hao Z, Hsieh CF, Hubbell S, Kenfack D, Ma K, Mi X, Noor MNS, Kassim AR, Ren H, Su SH, Sun IF, Thomas D, Ye W, He F (2012) The variation of tree beta diversity across a global network of forest plots. Global Ecol Biogeogr 21:1191–1202

    Article  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ellner SP, Fussmann G (2003) Effects of successional dynamics on metapopulation persistence. Ecology 84:882–889

    Article  Google Scholar 

  • Ferrenberg S, O’Neill SP, Knelman JE, Todd B, Bradley D, Robinson T, Schmidt SK, Townsend AR, Williams MW, Cleveland CC, Melbourne BA, Jiang L, Nemergut DR (2013) Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J 7:1102–1111

    Article  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA 109:21390–21395

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    Article  PubMed  CAS  Google Scholar 

  • Finlay BJ, Clarke KJ (1999) Ubiquitous dispersal of microbial species. Nature 400:828–828

    Article  CAS  Google Scholar 

  • Griffiths RI, Thomson BC, James P, Bell T, Balley M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13:1642–1654

    Article  PubMed  Google Scholar 

  • Kielak A, Pijl AS, van Veen JA, Kowalchuk GA (2008) Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbiol Ecol 63:372–382

    Article  PubMed  CAS  Google Scholar 

  • Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PGL, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81:509–520

    Article  PubMed  Google Scholar 

  • Kraft NJB, Comita LS, Chase JM, Sanders NJ, Swenson NG, Crist TO et al (2011) Disentangling the drivers of b-diversity along latitudinal and elevational gradients. Science 333:1755–1758

    Article  PubMed  CAS  Google Scholar 

  • Landesman W, Nelson DM, Fitzpatrick MC (2014) Soil properties and tree species drive beta-diversity of soil bacterial communities. Soil Biol Biochem 76:201–209

    Article  CAS  Google Scholar 

  • Legendre P, Mi X, Ren H, Ma K, Yu M, Sun IF, He F (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674

    Article  PubMed  Google Scholar 

  • Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399–1410

    Article  PubMed  Google Scholar 

  • Li H, Zhang Y, Zhang CG, Chen GX (2005) Effect of petroleum-containing wastewater irrigation on bacterial diversities and enzymatic activities in a paddy soil irrigation area. J Environ Qual 34:1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Li H, Ye D, Wang X, Settles ML, Wang J, Hao Z, Zhou L, Dong P, Jiang Y, Ma Z (2014) Soil bacterial communities of different natural forest types in Northeast China. Plant Soil 383:203–216

    Article  CAS  Google Scholar 

  • Li H, Wang X, Liang C, Hao Z, Zhou L, Ma S, Li X, Yang S, Yao F, Jiang Y (2015) Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests. Sci Rep 5:12234

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC (2011) Drivers of bacterial beta-diversity depend on spatial scale. Proc Natl Acad Sci USA 108:7850–7854

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Monroy F, Van der Putten WH, Yergeau E, Mortimer SR, Duyts H, Bezemer TM (2012) Community patterns of soil bacteria and nematodes in relation to geographic distance. Soil Biol Biochem 45:1–7

    Article  CAS  Google Scholar 

  • Myers JA, Chase JM, Jimenez I, Jorgensen PM, Araujo-Murakami A, Paniagua-Zambrana N, Seidel R (2013) Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol Lett 16:151–157

    Article  PubMed  Google Scholar 

  • Navarrete AA, Tsai SM, Mendes LW, Faust K, de Hollander M, Cassman N, van Veen JA, Kuramae EE (2015) Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol Ecol 24:2433–2448

    Article  PubMed  CAS  Google Scholar 

  • Nemergut DR, Cleveland CC, Wieder WR, Washenberger CL, Townsend AR (2010) Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil Biol Biochem 42:2153–2160

    Article  CAS  Google Scholar 

  • Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 77:342–356

    Article  PubMed  PubMed Central  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) Vegan: community ecology package. R package version 2.0–5. http://CRAN.R-project.org/package=vegan

  • Oliver SG (1996) From DNA sequence to biological function. Nature 379:597–600

    Article  PubMed  CAS  Google Scholar 

  • Prescott CE, Grayston SJ (2013) Tree species influence on microbial communities in litter and soil: current knowledge and research needs. Forest Ecol Manag 309:19–27

    Article  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berq G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sokol ER, Herbold CW, Lee CK, Cary SC, Barrett JE (2013) Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains. Ecosphere 4:136

    Article  Google Scholar 

  • Stephan A, Meyer AH, Schmid B (2000) Plant diversity affects culturable soil bacteria in experimental grassland communities. J Ecol 88:988–998

    Article  Google Scholar 

  • Wang X, Hao Z, Zhang J, Lian J, Li B, Ye J, Yao X (2009) Tree size distributions in an old-growth temperate forest. Oikos 118:25–36

    Article  Google Scholar 

  • Wang X, Wiegand T, Hao Z, Li B, Ye J, Lin F (2010) Spatial associations in an old-growth temperate forest, Northeastern China. J Ecol 98:674–686

    Article  Google Scholar 

  • Yergeau E, Bezemer TM, Hedlund K, Mortlmer SR, Kowalchuk GA, der Putten WH (2010) Influence of space, soil, nematodes and microbial community composition of chalk grassland soils. Environ Microbiol 12:2096–2106

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “China Soil Microbiome Initiative: Function and Regulation of Soil-Microbial Systems” of the Chinese Academy of Sciences (XDB15010302), National Natural Science and Foundation of China (31370444), and State Key Laboratory of Forest and Soil Ecology (LFSE2013-11 and LFSE2013-14). T.M. Bezemer was supported by Chinese Academy of Sciences Visiting Professorship for Senior International Scientists (2013T1Z0014). We thank Prof. Pierre Legendre for valuable comments about statistical analyses, Jianjun Wang for helpful comments on the manuscript, our field crew from the Changbai Mountain National Station of Forest Ecosystem Observation and Research for help with collecting the soil cores, and Dr. Suresh Iyer, Dr. Matthew Settles, and the other researchers from the Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, USA for technical assistance with 454 pyrosequencing analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xugao Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 20 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, H., Bezemer, T.M. et al. Drivers of bacterial beta diversity in two temperate forests. Ecol Res 31, 57–64 (2016). https://doi.org/10.1007/s11284-015-1313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-015-1313-z

Keywords

Navigation