Ecological Research

, Volume 30, Issue 6, pp 989–1003 | Cite as

Contemporary and future distribution patterns of fluvial vegetation under different climate change scenarios and implications for integrated water resource management

  • João Rocha
  • Samantha Jane Hughes
  • Paulo Almeida
  • Isabel Garcia-Cabral
  • Franciso Amich
  • António L. Crespí
Original Article

Abstract

Knowledge of plant community structure and how it can confer resistance to climate change effects is required for the management of fluvial ecosystems. Findings from such studies can be applied in decision making processes to implement measures to maintain, conserve or improve fluvial quality. Floristic and environmental data from 100 sample stations located in three River Basin Districts in northern Portugal were gathered as part of the 2010 Water Framework Directive monitoring program carried out on mainland Portugal. Three habitat types were characterized based on the flow dynamic level: the wetted channel, the bankfull area and the riparian gallery. Hierarchical cluster analysis of environmental data revealed three distinct environmental groups of sites. Floristic data were organized by these environmental groups characterized by altitudinal, temperature and precipitation data variables. The combination of taxonomic diversity and species frequency reflect functional differences for these habitats, here explained by a resistance and resilience approach. More low-frequency species and higher levels of functional diversity occurred at stations with more variable environmental conditions. Predictive modelling of the future distribution of the three environmental groups under two different climate scenarios supported the relevance of low-frequency traits in conferring resistance to climatic change effects.

Keywords

Fluvial vegetation Species frequency Floristic-structural characterization Environmental variability Climate change 

Supplementary material

11284_2015_1300_MOESM1_ESM.doc (242 kb)
Supplementary material 1 (DOC 242 kb)
11284_2015_1300_MOESM2_ESM.doc (156 kb)
Supplementary material 2 (DOC 155 kb)
11284_2015_1300_MOESM3_ESM.docx (28 kb)
Supplementary material 3 (DOCX 27 kb)

References

  1. Agras J, Chapman D (1999) A dynamic approach to the environmental kuznets curve hypothesis. Ecol Econ 28:267–277CrossRefGoogle Scholar
  2. Aguiar FC, Ferreira MT (2005) Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin, Portugal. Environ Conserv 32:1–12CrossRefGoogle Scholar
  3. Aguiar FC, Ferreira MT (2006) Riparian and aquatic vegetation in Mediterranean-type streams (western Iberia). Limnetica 25:411–424Google Scholar
  4. Aguiar FC, Ferreira MT, Moreira IS, Albuquerque A, Boatman ND, Clay DV, Pywell RF (2000) Riparian types on a Mediterranean basin. Asp Appl Biol 58:221–232Google Scholar
  5. Aguiar FC, Ferreira MT, Albuquerque A, Moreira I (2007) Alien and endemic flora at reference and non-reference sites in Mediterranean-type streams in Portugal. Aquat Conserv Marine Freshwater Ecosyst 17:335–347CrossRefGoogle Scholar
  6. Aguiar FC, Ferreira MT, Albuquerque A, Rodríguez-González P, Segurado P (2009) Structural and functional responses of riparian vegetation to human disturbance: performance and spatial scale-dependence. Fundam Appl Limnol 175:249–267CrossRefGoogle Scholar
  7. Allen CR, Gunderson L, Johnson AR (2005) The use of discontinuities and functional groups to assess relative resilience in complex systems. Ecosystems 8:958–966CrossRefGoogle Scholar
  8. Allison G (2004) The influence of species diversity and stress intensity on community resistance and resilience. Ecol Monogr 74:117–134CrossRefGoogle Scholar
  9. Allison SD, Martiny JB (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci 105(Supplement 1):11512–11519PubMedCentralCrossRefPubMedGoogle Scholar
  10. Andrés FN, Zapatero MG, Martín FG, Roselló JAE, Anta MÁS, Blanco LL (1986) Alisedas salmantinas y zamoranas. Studia botanica 5:39–52 [in Spanish] Google Scholar
  11. Baldwin RA (2009) Use of maximum entropy modeling in wildlife research. Entropy 11:854–866CrossRefGoogle Scholar
  12. Benda L, Poff NL, Miller D, Dunne T, Reeves G, Pess G, Pollock M (2004) The network dynamics hypothesis: how channel networks structure riverine habitats. Bioscience 54:413–427CrossRefGoogle Scholar
  13. Benda L, Miller D, Andras K, Bigelow P, Reeves G, Michael D (2007) NetMap: a new tool in support of watershed science and resource management. Forest Science 53:206–219Google Scholar
  14. Bernez I, Ferreira T (2007) River macrophytes in regulated Mediterranean-type rivers of southern Portugal. Belg J Bot 140:136–139Google Scholar
  15. Bombino G, Gurnell AM, Tamburino V, Zema DA, Zimbone SM (2008) Sediment size variation in torrents with check dams: effects on riparian vegetation. Ecol Eng 32:166–177CrossRefGoogle Scholar
  16. Braun-Blanquet J (1979) Fitosociología. Bases para el estudio de las comunidades vegetales. Blume Madrid (in Spanish)Google Scholar
  17. Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18:119–125CrossRefGoogle Scholar
  18. Buiatti M, Longo G (2013) Randomness and multilevel interactions in biology. Theory Biosci 132:139–158CrossRefPubMedGoogle Scholar
  19. Carpenter SR, Fisher SG, Grimm NB, Kitchell JF (1992) Global change and freshwater ecosystems. Annu Rev Ecol Syst 23:119–139CrossRefGoogle Scholar
  20. Cha SH (2008) Taxonomy of nominal type histogram distance measures. City 1:325–330Google Scholar
  21. Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, EHSE Sarah, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405:234–242CrossRefPubMedGoogle Scholar
  22. Cinner JE, McClanahan TR, Daw TM, Graham NA, Maina J, Wilson SK, Hughes TP (2009) Linking social and ecological systems to sustain coral reef fisheries. Curr Biol 19:206–212CrossRefPubMedGoogle Scholar
  23. Coelho C, Silva R, Veloso-Gomes F, Taveira-Pinto F (2009) Potential effects of climate change on northwest Portuguese coastal zones. ICES J Marine Sci J Du Conseil 66:1497–1507CrossRefGoogle Scholar
  24. Commission European (2000) Directive 2000/60/EC of the European Parliament: establishing a framework for Community action in the field of water policy. Off J Eur Commun L327:1–72Google Scholar
  25. Commission European (2009) Common implementation strategy for the water framework directive (2000/60/EC). River Basin Manag Chang Climate 24:141Google Scholar
  26. Corenblit D, Tabacchi E, Steiger J, Gurnell AM (2007) Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. Earth Sci Rev 84:56–86CrossRefGoogle Scholar
  27. Cortes R, Hughes SJ, Pereira VR, Varandas S (2013) Tools for bioindicator assessment in rivers: the importance of spatial scale, land use patterns and biotic integration. Ecol Ind 34:460–477CrossRefGoogle Scholar
  28. Costa JC, Aguiar C, Capelo JH, Lousã M, Neto C (1998) Biogeografia de Portugal continental. Quercetea 0:5–56 [in Portuguese] Google Scholar
  29. Crespí AL, Pereira A, Fernandes CP, Cortes R, Oliveira S, Ribeiro JA (2001) Descripción de la estrutura vegetal de comunidades riparias del Noroeste de Portugal. Boletín de la Real Sociedad Española de Historia Natural Sec Biol. 96:69–80 (in Spanish) Google Scholar
  30. Crespí AL, Bernardos S, Castro A, Fernandes CP, Amich F (2005) Phytostructural characterization of several vegetation types in northern Portugal. II. The structural expressivity and the resistance of the vegetation. Plant Biosyst 139:387–398CrossRefGoogle Scholar
  31. Crespí AL, Ferreira M, Fonseca TF, Pacheco Marques C (2013) Structural and floristic behaviors in East Timor forest vegetation. Ecol Res 28:1081–1090CrossRefGoogle Scholar
  32. Direção Geral do Território (2006) Carta Corine Land Cover. http://www.dgterritorio.pt/cartografia_e_geodesia/mapas_on_line/. Accessed 29 Jul 2015
  33. Dixon M (2003) Effects of flow pattern on riparian seedling recruitment on sandbars in the Wisconsin River, Wisconsin, USA. Wetlands 22:125–139CrossRefGoogle Scholar
  34. Downing AL, Leibold MA (2010) Species richness facilitates ecosystem resilience in aquatic food webs. Freshw Biol 55:2123–2137CrossRefGoogle Scholar
  35. Duarte P, Azevedo B, Ribeiro C, Pereira A, Falcão M, Serpa D, Bandeira R, Reia J (2007) Management oriented mathematical modelling of Ria Formosa (South Portugal). Transit Waters Monogr 1:13–51Google Scholar
  36. European Commission (2015). Introduction to the new EU Water Framework Directive. http://ec.europa.eu/environment/water/water-framework/info/intro_en.htm. Accessed 29 Jul 2015
  37. Farris JS (1969) On cophenetic correlation coefficients. Syst Zool 18:279–285CrossRefGoogle Scholar
  38. Feio MJ, Reynoldson TB, Ferreira V, Graça MAS (2007) A predictive model for freshwater bioassessment (Mondego river, Portugal). Hydrobiologia 589:55–68CrossRefGoogle Scholar
  39. Feio MJ, Aguiar FC, Almeida SFP, Ferreira J, Ferreira MT, Elias C, Serra SRS, Buffagni A, Cambra J, Chauvin C, Delmas F, Dörflinger G, Erba S, Flor N, Ferréol M, Germ M, Mancini L, Manolaki P, Marcheggiani S, Minciardi MR, Munné A, Papastergiadou E, Prat N, Puccinelli C, Rosebery J, Sabater S, Ciadamidaro S, Tornés E, Tziorztis I, Urbanič G, Vieira C (2014) Least disturbed condition for European Mediterranean rivers. Sci Total Environ 476:745–756CrossRefPubMedGoogle Scholar
  40. Fernández D, Barquín J, Ívarez-Cabria MA, Peñas FJ (2012) Delineating riparian zones for entire river networks using geomorphological criteria. Hydrol Earth Syst Sci Discus 9:4045–4071CrossRefGoogle Scholar
  41. Fernández-González F, Loidi J, Moreno JC (2005) Impacts on plant biodiversity. In: Moreno JM (ed) Impacts on climatic change in Spain. OCCE, Ministerio de Medio Ambiente, Madrid, pp 183–248Google Scholar
  42. Ferreira MT, Aguiar FC, Nogueira C (2005) Changes in riparian woods over space and time: influence of environment and land use. For Ecol Manage 212:145–159CrossRefGoogle Scholar
  43. Fielding AH, Bel JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  44. Fryxell JM, Wilmshurst JF, Sinclair AR, Haydon DT, Holt RD, Abrams PA (2005) Landscape scale, heterogeneity, and the viability of Serengeti grazers. Ecol Lett 8:328–335CrossRefGoogle Scholar
  45. Garel E, Pinto L, Santos A, Ferreira Ó (2009) Tidal and river discharge forcing upon water and sediment circulation at a rock-bound estuary (Guadiana estuary, Portugal). Estuar Coast Shelf Sci 84:269–281CrossRefGoogle Scholar
  46. Gitay H, Wilson JB, Lee WG (1996) Species redundancy: a redundant concept? J Ecol 84:121–124CrossRefGoogle Scholar
  47. Gunderson LH (2000) Ecological resilience in theory and application. Annu Rev Ecol Syst 31:425–439CrossRefGoogle Scholar
  48. Gurnell AM, Bertoldi W, Corenblit D (2012) Changing river channels: the roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth Sci Rev 111:129–141CrossRefGoogle Scholar
  49. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32CrossRefGoogle Scholar
  50. Hering D, Borja A, Carstensen J, Carvalho L, Elliott M, Feld CK, Heiskanen AS, Johnson RK, Moe J, Pont D, Solheim AL, van de Bund W (2010) The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Sci Total Environ 408:4007–4019CrossRefPubMedGoogle Scholar
  51. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  52. Hoelzer A (2003) Vegetation ecological studies at the lower course of Sabor river (Trás-os-Montes, NE Portugal). MsD These, University of Bremen, BremenGoogle Scholar
  53. Holling CS (1973) Resilience and stability of ecological systems. Annual Rev Ecol Evolu Sys 4:1–23CrossRefGoogle Scholar
  54. Honrado J, Alves P, Aguiar C, Ortiz S, Barreto Caldas F (2003) De Vegetatio Lusitana Notae-I: 1. Juresian riparian birch woodlands: Carici reuterianaeBetuletum celtibericae as. Nova. Silva Lusitana 11:237–241 [in Portuguese] Google Scholar
  55. Hughes S, Santos J, Ferreira MT, Caraça R, Mendes AM (2009) Ecological assessment of an intermittent Mediterranean river using community structure and function: evaluating the role of different organism groups. Freshw Biol 54:2383–2400CrossRefGoogle Scholar
  56. Hughes SJ, Cabecinha E, Santos J, Mendes Andrade CM, Lopes DM, Trindade HM, Cabral JA, Santos M, Lourenço M, Aranha JT, Fernandes L, Morais MM, Leite SM, Oliveira PC, Cortes R (2012) A predictive modelling tool for assessing climate, land use and hydrological change on reservoir physicochemical and biological properties. Area 44(4):432–442CrossRefGoogle Scholar
  57. Hupp CR, Osterkamp WR (1996) Riparian vegetation and fluvial geomorphic processes. Geomorphology 14:277–295CrossRefGoogle Scholar
  58. INAG (2008) Insituto Nacional da Água. Protocolo de amostragem e análise para os macrófitos. In Manual para a avaliacão biológica da qualidade da água em sistemas fluviais segundo a Directiva Quadro da Água. http://www.apambiente.pt/dqa/assets/protocolo-de-amostragem-e-an%C3%A1lise-para-os-macr%C3%B3fitos.pdf. Accessed 29 Jul 2015, (in Portuguese)
  59. Ives AR, Carpenter SR (2007) Stability and diversity of ecosystems. Science 317:58–62CrossRefPubMedGoogle Scholar
  60. Jansson R, Zinko U, Merritt DM, Nilsson C (2005) Hydrochory increases riparian plant species richness: a comparison between a free-flowing and a regulated river. J Ecol 93:1094–1103CrossRefGoogle Scholar
  61. Jiang J, Gao D, DeAngelis DL (2012) Towards a theory of ecotone resilience: coastal vegetation on a salinity gradient. Theor Popul Biol 82:29–37CrossRefPubMedGoogle Scholar
  62. Khavhagali VP (2011) Climate change impacts on plants. Grassroots 11:9–13Google Scholar
  63. Lake PS (2000) Disturbance, patchiness, and diversity in streams. J North Am Benthol Soc 19:573–592CrossRefGoogle Scholar
  64. Martins Á, Crespí AL, Castro A, Fernandes CP, Rocha J, Bernardos S, Aguiar C, Amich F (2007) Contribuición para la caracterización florístico-ambiental del norte de Portugal. Botan Complut 31:99–111 (in Spanish) Google Scholar
  65. May RM (1974) Stability and complexity in model ecosystems, 2nd edn. Princeton University Press, New JerseyGoogle Scholar
  66. McGrady-Steed J, Harris PM, Morin PJ (1997) Biodiversity regulates ecosystem predictability. Nature 390:162–165CrossRefGoogle Scholar
  67. Meyer JL, Sale MJ, Mulholland PJ, LeRoy Poff N (1999) Impacts of climate change on aquatic ecosystems functioning and health. J Am Water Resour Assoc 35:1373–1386CrossRefGoogle Scholar
  68. Ministério do Ambiente, Ordenamento do Território e Energia 2015 Programa Nacional de Barragens de Elevado Potencial Hidroelétrico (PNBEPH). http://www.apambiente.pt/?ref=16&subref=7&sub2ref=9&sub3ref=835. Accessed 29 Jul 2015, (in Portuguese)
  69. Molina JA (1996) Sobre la vegetación de los humedales de la Península Ibérica (1. Phragmiti-Magnocaricetea). Lazaroa 16:27–88 (in Spanish) Google Scholar
  70. Naeem S, Knops JM, Tilman D, Howe KM, Kennedy T, Gale S (2000) Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos 91:97–108CrossRefGoogle Scholar
  71. Naiman RJ, Décamps H (1997) The ecology of interfaces: riparian zones. Annual Rev Ecol Evol Sys 28:621–658CrossRefGoogle Scholar
  72. Niemi GJ, McDonald ME (2004) Application of ecological indicators. Annual Rev Ecol Evol Sys, pp 89–111Google Scholar
  73. North CP, Davidson SK (2012) Unconfined alluvial flow processes: Recognition and interpretation of their deposits, and the significance for palaeogeographic reconstruction. Earth Sci Rev 111:199–223CrossRefGoogle Scholar
  74. Occhipinti-Ambrogi A, Galil BS (2004) A uniform terminology on bioinvasions: a chimera or an operative tool? Mar Pollut Bull 49:688–694CrossRefPubMedGoogle Scholar
  75. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Sys, pp 637–669Google Scholar
  76. Pearson TN, Li HW, Lamberti GA (1992) Influence of habitat complexity on resistance to flooding and resilience of stream fish assemblages. Trans Am Fish Soc 121:427–436CrossRefGoogle Scholar
  77. Pereira MCDMD (2009) A flora e vegetação da serra de Monfurado (Alto Alentejo-Portugal). Guineana 15:153–166 (in Portuguese) Google Scholar
  78. Pereira EMP (2013) Análise Geobotânica dos Bosques e Galerias Ripícolas da Bacia Hidrográfica do Tejo em Portugal. PhD thesis, University of Lisbon, Instituto de Geografia e Ordenamento do Território. LisbonGoogle Scholar
  79. Peterson GD (2002) Estimating resilience across landscapes. Conservation Ecology 6: 17. http://www.consecol.org/vol6/iss1/art17/. Accessed 29 Jul 2015
  80. Peterson G, Allen CR, Holling CS (1998) Ecological resilience, biodiversity, and scale. Ecosystems 1:6–18CrossRefGoogle Scholar
  81. Peterson AT, Papes M, Eaton M (2007) Transferability and model evaluation in ecological niche moedeling: a comparison of GARP and Maxent. Ecography 30:550–560CrossRefGoogle Scholar
  82. Phillips SJ (2010) Species’ distribution modeling for conservation educators and practitioners. Exercise. American Museum of Natural History. Lessons in Conservation. http://ncep.amnh.org/linc. Accessed 15 Nov 2013
  83. Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st International Conference on Machine Learning. ACM Press, New YorkGoogle Scholar
  84. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  85. Pickett STA, Kolasa J, Armesto JJ, Collins SL (1989) The ecological concept of disturbance and its expression at various hierarchical levels. Oikos 54:129–136CrossRefGoogle Scholar
  86. Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326CrossRefGoogle Scholar
  87. Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J North Am Benthol Soc pp 391–409Google Scholar
  88. Portuguese National Institute of Statistic (2012). Censos 2011. Resultados definitivos. http://www.ine.pt/scripts/flex_definitivos/Main.html. Accessed 29 Jul 2015 (in Portuguese)
  89. Ramirez J, Jarvis A (2008) High resolution statistically downscaled future climate surfaces. Int Centre Trop Agricult, CIATGoogle Scholar
  90. Rivas-Martínez S, de la Fuente García V (1986) Alisedas mediterráneo-iberoatlánticas en la Península Ibérica. Studia Botanica 5:9–38 (in Spanish) Google Scholar
  91. Rodewald AD, Bakermans MH (2006) What is the appropriate paradigm for riparian forest conservation? Biol Conserv 128:193–200CrossRefGoogle Scholar
  92. Rozeira A (1944) A flora da província de Trás-os-Montes e Alto Douro. Memórias da Sociedade Broteriana 3:110–118 (in Portuguese) Google Scholar
  93. Rykiel EJ (1985) Towards a definition of ecological disturbance. Aust J Ecol 10:361–365CrossRefGoogle Scholar
  94. Sabo JL, Sponseller R, Dixon M, Gade K, Harms T, Heffernan J, Jani A, Katz G, Soykan C, Watts J, Welter J (2005) Riparian zones increase regional species richness by harboring different, not more, species. Ecology 86:56–62CrossRefGoogle Scholar
  95. Santos JA, Corte-Real J, Leite SM (2005) Weather regimes and their connection to the winter rainfall in Portugal. Int J Climatol 25:33–50CrossRefGoogle Scholar
  96. Seavy NE, Gardali T, Golet GH, Griggs FT, Howell CA, Kelsey R, Small SL, Viers JH, Weigand JF (2009) Why Climate Change Makes Riparian Restoration More Important than Ever: Recommendations for Practice and Research. Ecol Restorat 27:330–338CrossRefGoogle Scholar
  97. Stevens PF (2001 onwards). Angiosperm Phylogeny Website. http://www.mobot.org/mobot/research/apweb/. Accessed 29 Jul 2015
  98. Suding KN, Lavorel S, Chapin FS, Cornelissen JH, Diaz S, Garnier E, Goldberg D, Hooper DU, Jackson ST, Navas ML (2008) Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Change Biol 14:1125–1140CrossRefGoogle Scholar
  99. Taylor DL, Herriott IC, Stone KE, McFarland JW, Booth MG, Leigh MB (2010) Structure and resilience of fungal communities in Alaskan boreal forest soils. Can J For Res 40:1288–1301CrossRefGoogle Scholar
  100. The Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  101. Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250PubMedCentralCrossRefPubMedGoogle Scholar
  102. Tilman D (1996) Biodiversity: population versus ecosystem stability. Ecology 77:350–363CrossRefGoogle Scholar
  103. Trigo RM, DaCamara CC (2000) Circulation weather types and their influence on the precipitation regime in Portugal. Int J Climatol 20:1559–1581CrossRefGoogle Scholar
  104. Trigo RM, Pozo-Vázquez D, Osborn TJ, Castro-Díez Y, Gámiz-Fortis S, Esteban-Parra MJ (2004) North Atlantic Oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int J Climatol 24:925–944CrossRefGoogle Scholar
  105. Van Ruijven J, Berendse F (2010) Diversity enhances community recovery, but not resistance, after drought. J Ecol 98:81–86CrossRefGoogle Scholar
  106. Walker B (1995) Conserving biological diversity through ecosystem resilience. Conserv Biol 9:747–752CrossRefGoogle Scholar
  107. White PS (1979) Pattern, process, and natural disturbance in vegetation. Bot Rev 45:229–299CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2015

Authors and Affiliations

  • João Rocha
    • 1
  • Samantha Jane Hughes
    • 2
  • Paulo Almeida
    • 3
  • Isabel Garcia-Cabral
    • 3
  • Franciso Amich
    • 4
  • António L. Crespí
    • 5
  1. 1.Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal
  2. 2.CITAB-UTAD, Centre for Research and Technology of Agro-Environment and Biological Sciences, Department of Forestry and Landscape ArchitectureUniversity of Trás-os-Montes and Alto DouroVila RealPortugal
  3. 3.Herbarium, University of Trás-os-Montes e Alto DouroVila RealPortugal
  4. 4.Evolution, Taxonomy and Conservation Group (ECOMED), Department of BotanyUniversity of SalamancaSalamancaSpain
  5. 5.CITAB-UTAD, Centre for Research and Technology of Agro-Environment and Biological SciencesUniversity of Trás-os-Montes and Alto DouroVila RealPortugal

Personalised recommendations