Chamaecyparis montane cloud forest in Taiwan: ecology and vegetation classification

Abstract

Montane cloud forest is one of the most endangered ecosystems. However, there are few comprehensive studies on the distribution of subtropical montane cloud forest (SMCF). Chamaecyparis forest is one type of SMCF in Taiwan, distributed across the whole island. This study describes eleven types of this forest in Taiwan based on the Braun-Blanquet approach. Plots were selected from the National Vegetation Database of Taiwan. Two alliances were defined, both of which belong to the order Fagetalia hayatae. Topography and altitude explain the contrasting habitat requirements of these two alliances, whereas seasonality of moisture, soil properties and altitude explain differences in floristic composition at the association level. The alliance of Chamaecyparidion formosanae on slopes and ridges includes coniferous or mixed coniferous and evergreen broad-leaved forests; it is found at higher altitudes and is more influenced by the summer monsoon than the other alliance. Five associations are defined within this alliance. The alliance of Pasanio kawakamii - Machilion japonicae growing on slopes and in valleys contains evergreen broad-leaved forests or forests with a mixture of coniferous and evergreen broad-leaved species. Six associations can be determined under the alliance of Pasanio kawakamii-Machilion japonicae. Classification of each syntaxon was formalized using Cocktail Determination Key.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bruelheide H (1997) Using formal logic to classify vegetation. Folia Geobot 32:41–46

    Article  Google Scholar 

  2. Bruelheide H, Chytrý M (2000) Towards unification of national vegetation classifications: a comparison of two methods for analysis of large data sets. J Veg Sci 11:295–306

    Article  Google Scholar 

  3. Bruijnzeel LA, Scatena FN, Hamilton LS (2010) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge

    Google Scholar 

  4. Chen YF (2001) Vegetation of Taiwan—Chamaecyparis cloud forest zone. Avanguardbook, Taipei (in Chinese)

    Google Scholar 

  5. Chou CH, Chen TY, Liao CC, Peng CI (2000) Long-term ecological research in Yuanyang Lake forest ecosystem. I. Vegetation composition and analysis. Bot Bull Acad Sinica 41:61–72

    Google Scholar 

  6. Chu HS, Chang SC, Klemm O, Lai CW, Lin YZ, Wu CC, Lin JY, Jiang JY, Chen J, Gottgens JF, Hsia YJ (2014) Does canopy wetness matter? Evapotranspiration from a subtropical montane cloud forest in Taiwan. Hydrol Process 28:1190–1214

    Article  Google Scholar 

  7. Chytrý M (ed) (2007) Vegetation of the Czech Republic 1. Grassland and heathland vegetation. Academia, Prague (in Czech)

  8. Chytrý M, Tichý L, Holt J, Botta-Dukát Z (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13:79–90

    Article  Google Scholar 

  9. Chytrý M, Schaminée JHJ, Schwabe A (2011) Vegetation survey: a new focus for Applied Vegetation Science. Appl Veg Sci 14:435–439

    Article  Google Scholar 

  10. Curtis JT (1959) The vegetation of Wisconsin: An ordination of plant communities. University Wisconsin Press, Madison

    Google Scholar 

  11. Da LJ, Kang MM, Song K, Shang KK, Yang YC, Xia AM, Qi YF (2009) Altitudinal zonation of human-disturbed vegetation on Mt. Tianmu, eastern China. Ecol Res 24:1287–1299

    Article  Google Scholar 

  12. Forget PM, Lambert JE, Hulme PE, Wall SBV (2004) Seed fate: predation, dispersal and seed establishment. CABI Pub, Cambridge

    Google Scholar 

  13. Fujiwara K (1996) Classification of plant communities in the Vegetation of Japan 1980–1989. Bull Inst Environ Sci Technol Yokohama Natl Univ 22:23–79

    Google Scholar 

  14. Geiger R (1966) The climate near the ground. Harvard University Press, Cambridge

    Google Scholar 

  15. Gillies RR, Cui TNC, Kustas WP, Humes KS (1997) A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. Int J Remote Sens 18:3145–3166

    Article  Google Scholar 

  16. Hamilton LS, Juvik JO, Scatena FN (1995) The Puerto Rico tropical cloud forest symposium: introduction and workshop synthesis. In: Hamilton LS, Juvik JO, Scatena FN (eds) Tropical montane cloud forests. Springer-Verlag, New York, pp 1–18

    Chapter  Google Scholar 

  17. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  18. Horng FW, Ma FC, Yu HM, Hsui YR, Chang HM (2000) An estimation of original Chamaecyparis forest area in Taiwan and its implication for conservation. Q J Chin For 17:143–153

    Google Scholar 

  19. Hou XY (1983) Vegetation of China with references to its geographical distribution. Ann Mo Bot Gard 70:509–549

    Article  Google Scholar 

  20. Hsieh CF (1989) Structure and floristic composition of the beech forest in Taiwan. Taiwania 34:28–44

    Google Scholar 

  21. Huang TC, Hsieh CF (1994–2003) Flora of Taiwan, vol. I–VI, 2nd edn., National Taiwan University, Taipei

  22. Hukusima T, Lu SY, Matsui T, Nishio T, Liu CL, Pignatti S (2005) Phytosociology of Fagus hayatae forests in Taiwan. Rend Fis Acc Lincei 16:171–189

    Article  Google Scholar 

  23. Hukusima T, Matsui T, Nishio T, Pignatti S, Yang L, Lu SY, Kim MH, Yoshikawa M, Honma H, Wang Y (2013) Phytosociology of the beech (Fagus) forests in East Asia. Springer, Heidelberg

    Book  Google Scholar 

  24. Janišová M, Dúbravková D (2010) Formalized classification of rocky Pannonian grasslands and dealpine Sesleria dominated grasslands in Slovakia using a hierarchical expert system. Phytocoenologia 40:267–291

    Article  Google Scholar 

  25. Jennings MD, Faber-Langendoen D, Loucks OL, Peet RK, Roberts D (2009) Standards for associations and alliances of the U.S. National Vegetation Classification. Ecol Monogr 79:173–199

    Article  Google Scholar 

  26. Kent M (2012) Vegetation description and data analysis, 2nd edn. Wiley-Blackwell, Hoboken

    Google Scholar 

  27. Kočí M, Chytrý M, Tichý L (2003) Formalized reproduction of an expert-based phytosociological classification: a case study of subalpine tall-forb vegetation. J Veg Sci 14:601–610

    Article  Google Scholar 

  28. Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Article  Google Scholar 

  29. Lai IL, Chang SC, Lin PH, Chou CH, Wu JT (2006) Climatic characteristics of the subtropical mountainous cloud forest at Yuanyang Lake Long-Term ecological research site, Taiwan. Taiwania 51:317–329

    Google Scholar 

  30. Lai IL, Schroeder WH, Wu JT, Kuo-Huang LL, Mohl C, Chou CH (2007) Can fog contribute to nutrition of Chamaecyparis obtusa var. formosana? Uptake of a fog solute tracer into foliage and transport to root. Tree Physiol 27:1001–1009

    CAS  Article  PubMed  Google Scholar 

  31. Lai YJ, Chou MD, Lin PH (2010) Parameterization of topographic effect on surface solar radiation. J Geophys Res 115:D01104

    Google Scholar 

  32. Lai YJ, Li CF, Lin PH, Wey TH, Chang CS (2012) Comparison of MODIS land surface temperature and ground-based observed air temperature on complex topography. Int J Remote Sens 33:7685–7702

    Article  Google Scholar 

  33. Landucci F, Tichý L, Šumberová K, Chytrý M (2015) Formalized classification of species-poor vegetation: a proposal of a consistent protocol for aquatic vegetation. J Veg Sci 26:791–803

    Article  Google Scholar 

  34. Li CF, Chytrý M, Zelený D, Chen MY, Chen TY, Chiou CR, Hsia YJ, Liu HY, Yang SZ, Yeh CL, Wang JC, Yu CF, Lai YJ, Chao WC, Hsieh CF (2013) Classification of Taiwan forest vegetation. Appl Veg Sci 16:698–719

    Article  Google Scholar 

  35. Lin CT, Li CF, Zelený D, Chytrý M, Nakamura Y, Chen MY, Chen TY, Hsia YJ, Hsieh CF, Liu HY, Wang JC, Yang SZ, Yeh CL, Chiou CR (2012) Classification of high-mountain coniferous forests in Taiwan. Folia Geobot 47:373–401

    Article  Google Scholar 

  36. Miyawaki A (1980) Vegetation of Japan 1. Yakushima. Shibundo Publishing, Tokyo (in Japanese)

    Google Scholar 

  37. Miyawaki A (1985) Vegetation of Japan 6. Chubu. Shibundo Publishing, Tokyo (in Japanese)

    Google Scholar 

  38. Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. John Wiley & Sons Inc, New York

    Google Scholar 

  39. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: community ecology package. R package version 2.0-6. http://CRAN.R-project.org/package=vegan. Accessed 30 April 2013

  40. Oliveria RS, Eller CB, Bittencourt PR, Mulligan M (2014) The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Ann Bot 113:909–920

    Article  Google Scholar 

  41. Peet R, Roberts D (2013) Classification of natural and semi-natural vegetation. In: van der Maarel E, Franklin J (eds) Vegetation ecology, 2nd edn. Wiley-Blackwell, Oxford, pp 28–70

    Chapter  Google Scholar 

  42. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 30 April 2013

  43. Sandholt I, Rasmussen K, Andersen J (2002) A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens Environ 79:213–224

    Article  Google Scholar 

  44. Schupp EW, Jordano P, Gómez JM (2010) Seed dispersal effectiveness revised: a conceptual review. New Phytol 188:333–353

    Article  PubMed  Google Scholar 

  45. Sklenář P, Bendix J, Balslev H (2008) Cloud frequency correlates to plant species composition in the high Andes of Ecuador. Basic Appl Ecol 9:504–513

    Article  Google Scholar 

  46. Song YC (1999) Perspective of the vegetation zonation of forest region in eastern China. Acta Bot Sinica 41:541–552 (in Chinese)

    Google Scholar 

  47. Sørensen R, Zinko U, Seibert J (2006) On the calculation of the topographic wetness index: evaluation of different method based on field observations. Hydrol Earth Syst Sci 10:101–112

    Article  Google Scholar 

  48. Su HJ (1984) Studies on the climate and vegetation types of the natural forests in Taiwan (II)—Altitudinal vegetation zones in relation to temperature gradient. Q J Chin For 17:57–73

    Google Scholar 

  49. Su HJ (1985) Studies on the climate and vegetation types of the natural forests in Taiwan (III)—A scheme of geographical climatic regions. Q J Chin For 18:33–44

    Google Scholar 

  50. Su HJ (2002) The diversification and synthesis of vegetation classification. J NTU Exp For 16:269–282 (in Chinese)

    Google Scholar 

  51. Suzuki T (1952) The forest vegetation of East Asia. Kokin-Shoin, Tokyo (in Japanese)

    Google Scholar 

  52. Suzuki T (1954) The forest vegetation of the north-Formosa mountains. Jpn J Ecol 4:7–13 (in Japanese)

    Google Scholar 

  53. Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453

    Article  Google Scholar 

  54. Tichý L, Chytrý M (2006) Statistical determination of diagnostic species for site groups of unequal size. J Veg Sci 17:809–818

    Article  Google Scholar 

  55. van der Maarel E, Franklin J (2013) Vegetation ecology: historical notes and outline. In: van der Maarel E, Franklin J (eds) Vegetation ecology, 2nd edn. Wiley-Blackwell, Oxford, pp 45–59

    Chapter  Google Scholar 

  56. Weber HE, Moravec J, Theurillat JP (2000) International code of phytosociological nomenclature, 3rd edition. J Veg Sci 11:739–768

    Article  Google Scholar 

  57. Wey TH, Lai YJ, Chang CS, Shen CW, Hong CY, Wang YN, Chen MC (2011) Preliminary studies on fog characteristics at Xitou region of central Taiwan. J NTU Exp Forest 25:149–160 (in Chinese)

    Google Scholar 

  58. Xu J, Wang XH (2010) Distribution and characteristics of the mossy dwarf forest in China. J East China Nor Univ (Nature Science) 4:44–57 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

We appreciate the efforts of the editors and two anomymous reviewers who greatly helped us to improve this paper. The Forestry Bureau of Taiwan significantly contributed to this study by supporting the National Vegetation Database of Taiwan. The work was also supported by the Czech Science Foundation [GAP 505/12/1022 to CFL and MC, and GAP 505/11/0732 to DZ].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chang-Fu Hsieh.

Electronic supplementary material

Appendix

Appendix

See Table 4.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, CF., Zelený, D., Chytrý, M. et al. Chamaecyparis montane cloud forest in Taiwan: ecology and vegetation classification. Ecol Res 30, 771–791 (2015). https://doi.org/10.1007/s11284-015-1284-0

Download citation

Keywords

  • Cocktail Determination Key
  • Seasonality of moisture
  • Species group
  • Supervised classification
  • Topography