Ecological Research

, Volume 30, Issue 2, pp 225–234 | Cite as

Observation of O2:CO2 exchange ratio for net turbulent fluxes and its application to forest carbon cycles

  • Shigeyuki IshidoyaEmail author
  • Shohei Murayama
  • Hiroaki Kondo
  • Nobuko Saigusa
  • Ayaka W. Kishimoto-Mo
  • Susumu Yamamoto
Special Feature Long-term and interdisciplinary research on forest ecosystem functions: Challenges at Takayama site since 1993


An average O2:CO2 exchange ratio for net turbulent O2 and CO2 fluxes in a cool temperate deciduous forest in central Japan was obtained based on an aerodynamic method using continuous measurements of atmospheric O2/N2 ratio and CO2 concentration. The average daily mean O2:CO2 exchange ratio was 0.86 during summer, 2013, a value significantly lower than the 1.1 used as a globally averaged terrestrial biospheric O2:CO2 exchange ratio in a CO2 budget analysis. Using the value of 0.86, along with the O2:CO2 exchange ratio of 1.11 for the ecosystem respiration (RE) and 1.00 for the gross primary production (GPP), the net ecosystem production (NEP) measured with an eddy covariance method was separated into GPP and RE using a one-box canopy O2/CO2 budget model. The estimated average daily-mean GPP and RE values were consistent, within estimation errors, with those estimated from an empirical function of air temperature; the RE values were also comparable to the soil CO2 efflux observed using an open-flow soil chamber method. These results suggest that the simultaneous observation of O2 and CO2 concentrations in a forest has potential as a new tool to evaluate the forest CO2 budget.


O2:CO2 exchange ratio for net turbulent O2 and CO2 fluxes in a forest Atmospheric O2/N2 ratio Aerodynamic method Forest carbon cycle Global carbon cycle 



We thank K. Muto, N. Aoki, T. Usami, and H. Yatabe (National Institute of Advanced Industrial Science and Technology, Japan), K. Kurumado, and S. Yoshitake (River Basin Research Center, Gifu University) for their support during measurements and analyses. This study was partly supported by JSPS KAKENHI Grant Numbers 22710002, 24241008 and 24310017, and the Global Environment Research Account for National Institutes of the Ministry of the Environment, Japan.


  1. Badger MR, von Caemmerer S, Ruuska S, Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Phil Trans R Soc Lond B 355:1433–1446CrossRefGoogle Scholar
  2. Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Pau UKT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteor Soc 82:2415–2434CrossRefGoogle Scholar
  3. Battle M, Bender ML, Sowers T, Tans PP, Butler JH, Elkins JW, Ellis JT, Conway T, Zhang N, Lang P, Clarke AD (1996) Atmospheric gas concentrations over the past century measured in air from firn at the South Pole. Nature 383:231–235CrossRefGoogle Scholar
  4. Battle M, Bender ML, Tans PP, White JWC, Ellis JT, Conway T, Francey RJ (2000) Global carbon sinks and their variability inferred from atmospheric O2 and δ13C. Science 287:2467–2470CrossRefPubMedGoogle Scholar
  5. Bender ML, Ho DT, Hendricks MB, Mika R, Battle M, Tans PP, Conway TJ, Sturtevant B, Cassar N (2005) Atmospheric O2/N2 changes, 1993–2002: Implications for the partitioning of fossil fuel CO2 sequestration. Glob Biogeochem Cy 19:GB4017. doi: 10.1029/2004GB002410 CrossRefGoogle Scholar
  6. Blaine TW, Keeling RF, Paplawsky WJ (2006) An improved inlet for precisely measuring the atmospheric Ar/N2 ratio. Atmos Chem Phys 6:1181–1184CrossRefGoogle Scholar
  7. Goto D, Morimoto S, Ishidoya S, Ogi A, Aoki S, Nakazawa T (2013) Development of a high precision continuous measurement system for the atmospheric O2/N2 ratio and its application at Aobayama, Sendai, Japan. J Meteorol Soc Jpn 91:179–192CrossRefGoogle Scholar
  8. Ishidoya S, Aoki S, Goto D, Nakazawa T, Taguchi S, Patra PK (2012a) Time and space variations of the O2/N2 ratio in the troposphere over Japan and estimation of global CO2 budget. Tellus 64B:18964. doi: 10.3402/tellusb.v64i0.18964 Google Scholar
  9. Ishidoya S, Morimoto S, Aoki S, Taguchi S, Goto D, Murayama S, Nakazawa T (2012b) Oceanic and terrestrial biospheric CO2 uptake estimated from atmospheric potential oxygen observed at Ny-Alesund, Svalbard, and Syowa. Antarctica. Tellus 64B:18924. doi: 10.3402/tellusb.v64i0.18924 Google Scholar
  10. Ishidoya S, Murayama S, Takamura C, Kondo H, Saigusa N, Goto D, Morimoto S, Aoki N, Aoki S, Nakazawa T (2013) O2:CO2 exchange ratios in a cool temperate deciduous forest ecosystem of central Japan. Tellus 65B:21120. doi: 10.3402/tellusb.v65i0.21120 Google Scholar
  11. Ito A, Muraoka H, Koizumi H, Saigusa N, Murayama S, Yamamoto S (2006) Seasonal variation in leaf properties and ecosystem carbon budget in a cool-temperate deciduous broad-leaved forest: simulation analysis at Takayama site, Japan. Ecol Res 21:137–149. doi: 10.1007/s11284-005-0100-7 CrossRefGoogle Scholar
  12. Kato T, Tang Y (2008) Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Glob Change Biol 14:2333–2348CrossRefGoogle Scholar
  13. Kato T, Nakazawa T, Aoki S, Sugawara S, Ishizawa M (2004) Seasonal variation of the oxygen isotopic ratio of atmospheric carbon dioxide in a temperate forest. Glob Biogeochem Cy 18:GB2020. doi: 10.1029/2003GB002173 CrossRefGoogle Scholar
  14. Keeling RF (1988) Development of an interferometric oxygen analyzer for precise measurement of the atmospheric O2 mole fraction. PhD Thesis, Harvard University, CambridgeGoogle Scholar
  15. Keeling RF, Piper SC, Heimann M (1996) Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381:218–221CrossRefGoogle Scholar
  16. Kondo H, Saigusa N, Murayama S, Yamamoto S, Kannari A (2001) A numerical simulation of the daily variation of CO2 in the central part of Japan summer case. J Meteorol Soc Jpn 79:11–21CrossRefGoogle Scholar
  17. Langenfelds RL, Francey RJ, Steele LP, Battle M, Keeling RF, Budd WF (1999) Partitioning of the global fossil CO2 sink using a 19-year trend in atmospheric O2. Geophys Res Lett 26:1897–1900CrossRefGoogle Scholar
  18. Laws E (1991) Photosynthetic quotients, new production and net community production in the open ocean. Deep See Res 38:143–167CrossRefGoogle Scholar
  19. Laws E, Sakshaug E, Babin M, ves Dandonneau Y, Falkowski P, Geider R, Legendre L, Morel A, Sondergaard M, Takahashi M, Williams PJ (2002) Photosynthesis and primary productivity in marine ecosystem: practical aspects and application of techniques. Joint Global Ocean Flux Study (JGOFS) Report 36Google Scholar
  20. Le Quéré C, Moriarty R, Andrew RM, Peters GP, Ciais P, Friedlingstein P, Jones SD, Sitch S, Tans P, Arneth A, Boden TA, Bopp L, Bozec Y, Canadell JG, Chevallier F, Cosca CE, Harris I, Hoppema M, Houghton RA, House JI, Jain A, Johannessen T, Kato E, Keeling RF, Kitidis V, Klein Goldewijk K, Koven C, Landa CS, Landschützer P, Lenton A, Lima ID, Marland G, Mathis JT, Metzl N, Nojiri Y, Olsen A, Ono T, Peters W, Pfeil B, Poulter B, Raupach MR, Regnier P, Rödenbeck C, Saito S, Salisbury JE, Schuster U, Schwinger J, Séférian R, Segschneider J, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Werf GR, Viovy N, Wang Y-P, Wanninkhof R, Wiltshire A, Zeng N (2014) Global carbon budget 2014. Earth Syst Sci Data Discuss 7:521–610. doi: 10.5194/essdd-7-521-2014 CrossRefGoogle Scholar
  21. Machta L, Hughes E (1970) Atmospheric oxygen in 1967 to 1970. Science 168:1582–1584CrossRefPubMedGoogle Scholar
  22. Manning AC, Keeling RF (2006) Global oceanic and terrestrial biospheric carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus 58B:95–116CrossRefGoogle Scholar
  23. Massie ST, Hunten DM (1981) Stratospheric eddy diffusion coefficients from tracer data. J Geophys Res 86:9859–9868CrossRefGoogle Scholar
  24. Mo W, Lee MS, Uchida M, Inatomi M, Saigusa N, Mariko S, Koizumi H (2005a) Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan. Agric For Meteorol 134:81–94CrossRefGoogle Scholar
  25. Mo W, Nishimura N, Mariko S, Uchida M, Inatomi M, Koizumi H (2005b) Interannual variation in CO2 effluxes from soil and snow surface in a cool-temperate deciduous broad-leaved forest. Phyton 45:99–107Google Scholar
  26. Muraoka H, Koizumi H (2005) Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest: implications to the ecosystem carbon gain. Agr For Meteor 134:39–59CrossRefGoogle Scholar
  27. Murayama S, Saigusa N, Chan D, Yamamoto S, Kondo H, Eguchi Y (2003) Temporal variations of atmospheric CO2 concentration in a temperate deciduous forest in central Japan. Tellus 55B:232–243CrossRefGoogle Scholar
  28. Murayama S, Takamura C, Yamamoto S, Saigusa N, Morimoto S, Kondo H, Nakazawa T, Aoki S, Usami T, Kondo M (2010) Seasonal variations of atmospheric CO2, δ13C, and δ18O at a cool temperate deciduous forest in Japan: Influence of Asian monsoon. J Geophys Res 115:D17304. doi: 10.1029/2009JD013626 CrossRefGoogle Scholar
  29. Ohtsuka T, Akiyama T, Hashimoto Y, Inatomi M, Sakai T, Jia S, Mo W, Tsuda S, Koizumi H (2005) Biometric-based estimates of net primary production (NPP) in a cool-temperate deciduous forest stand beneath a flux tower. Agric For Meteorol 134:27–38CrossRefGoogle Scholar
  30. Ohtsuka T, Shizu Y, Hirota M, Tashiro Y, Shugang J, Iimura Y, Koizumi H (2014) Role of coarse woody debris in the carbon cycle of Takayama forest, central Japan. Ecol Res 29:91–101. doi: 10.1007/s11284-013-1102-5 CrossRefGoogle Scholar
  31. Pan Y, Birdsey RA, Fan J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenkko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993CrossRefPubMedGoogle Scholar
  32. Patra PK, Ishizawa M, Maksyutov S, Nakazawa T, Inoue G (2005) Role of biomass burning and climate anomalies for land–atmosphere carbon fluxes based on inverse modeling of atmospheric CO2. Glob Biogeochem Cy 19:GB3005. doi: 10.1029/2004GB002258 Google Scholar
  33. Randerson JT, Masiello CA, Still CJ, Rahn T, Poorter H, Field CB (2006) Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2. Global Change Biol 12:260–271. doi: 10.1111/j.1365-2486.2006.01099.x CrossRefGoogle Scholar
  34. Rosenberg G, Littler DS, Littler MM, Oliveira EC (1995) Primary production and photosynthetic quotients of seaweeds from São Paulo State, Brazil. Bot Mar 38:369–377CrossRefGoogle Scholar
  35. Saigusa N, Yamamoto S, Murayama S, Kondo H, Nishimura N (2002) Gross primary production and net ecosystem production of a cool -temperate deciduous forest estimated by the eddy covariance method. Agric For Meteorol 112:203–215CrossRefGoogle Scholar
  36. Saigusa N, Yamamoto S, Murayama S, Kondo H (2005) Inter-annual variability of carbon budget components in and ASIAFLUX forest site estimated by long-term flux measurement. Agric For Meteorol 134:4–16CrossRefGoogle Scholar
  37. Samish YB (1971) The rate of photorespiration as measured by means of oxygen uptake and its respiratory quotient. Plant Physiol 48:345–348CrossRefPubMedCentralPubMedGoogle Scholar
  38. Seibt U, Brand WA, Heimann M, Lloyd J, Severinghaus JP, Wingate L (2004) Observations of O2:CO2 exchange ratios during ecosystem gas exchange. Glob Biogeochem Cy 18:GB4024. doi: 10.1029/2004GB002242 CrossRefGoogle Scholar
  39. Severinghaus, J (1995) Studies of the terrestrial O2 and carbon cycles in sand dune gases and in biosphere 2. Ph. D. thesis, Columbia University, New YorkGoogle Scholar
  40. Tohjima Y, Mukai H, Nojiri Y, Yamagishi H, Machida T (2008) Atmospheric O2/N2 measurements at two Japanese sites: estimation of global oceanic and land biotic carbon sinks and analysis of the variations in atmospheric potential oxygen (APO). Tellus 60B:213–225CrossRefGoogle Scholar
  41. Trudinger CM, Enting IG, Etheridge DM, Francey RJ, Levchenko VA, Steele LP, Raynaud D, Arnaud L (1997) Modeling air movement and bubble trapping in firn. J Geophys Res 102:6747–6763CrossRefGoogle Scholar
  42. van der Laan-Luijkx IT, Karstens U, Steinbach J, Gerbig C, Sirignano C, Neubert REM, van der Laan S, Meijer HAJ (2010) CO2, δO2/N2 and APO: observations from the Lutjewad, Mace Head and F3 platform flask sampling network. Atmos Chem Phys 10:10691–10704. doi: 10.5194/acp-10-10691-2010 CrossRefGoogle Scholar
  43. Watanabe T, Kondo J (1990) The influence of canopy structure and density upon the mixing length within and above vegetation. J Meteorol Soc Jpn 68:227–235Google Scholar
  44. Worrall F, Clay GD, Masiello CA, Mynheer G (2013) Estimating the oxidative ratio of the global terrestrial biosphere carbon. Biogeochemistry 115:23–32. doi: 10.1007/s10533-013-9877-6 CrossRefGoogle Scholar
  45. Yamamoto S, Murayama S, Saigusa N, Kondo H (1999) Seasonal and inter-annual variation of CO2 flux between a temperate forest and the atmosphere in Japan. Tellus 51B:402–413CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2015

Authors and Affiliations

  • Shigeyuki Ishidoya
    • 1
    Email author
  • Shohei Murayama
    • 1
  • Hiroaki Kondo
    • 1
  • Nobuko Saigusa
    • 2
  • Ayaka W. Kishimoto-Mo
    • 3
  • Susumu Yamamoto
    • 1
  1. 1.Reserch Institute for Environmental Management TechnologyNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.National Institute for Environmental StudiesTsukubaJapan
  3. 3.National Institute for Agro-Environmental ScienceTsukubaJapan

Personalised recommendations