Skip to main content
Log in

Effects of management treatments on the carbon cycle of a cool-temperate broad-leaved deciduous forest and its potential as a bioenergy source

  • Special Feature
  • Long-term and interdisciplinary research on forest ecosystem functions: Challenges at Takayama site since 1993
  • Published:
Ecological Research

Abstract

The ecological effects of management treatments on the carbon cycles of secondary forests remain poorly understood. Here, we compared carbon cycles at three sites, a managed understory harvesting site (UH), a managed understory harvesting and litter raking site (LR), and an unmanaged site that served as a control (Um). We considered the harvests of understory and litter biomass as bioenergy sources, and made compartment models for the carbon cycle in units of carbon. Management increased the net primary production from 6.7 tC ha−1 year−1 for the Um site to 7.2 tC ha−1 year−1 for the UH site and 7.8 tC ha−1 year−1 for the LR site. Concurrently, management reduced the decomposition rate from 5.1 tC ha−1 year−1 for the Um site to 3.7 tC ha−1 year−1 for the UH site and 3.8 tC ha−1 year−1 for the LR site. Management also reduced fossil fuel use by 0.7 tC ha−1 year−1 for the UH site and 3.5 tC ha−1 year−1 for the LR site. These values suggest that harvesting had positive effects on net ecosystem production (NEP). In contrast, bioenergy use released 1.3 tC ha−1 year−1 into the atmosphere (in the form of carbon dioxide) for the UH site and 6.9 tC ha−1 year−1 for the LR site. These values suggest that harvesting had negative effects on NEP. We conclude that understory harvesting without litter raking (UH) maximized NEP at 2.9 tC ha−1 year−1. Our findings underscore the importance of a balanced ecological approach to forest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angers DA, Caron J (1998) Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42:55–72

    Article  Google Scholar 

  • Bowden RD, Newkirk KM, Rullo GM (1998) Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biol Biochem 30:1591–1597

    Article  CAS  Google Scholar 

  • Chen W, Chen JM, Price DT, Cihlar J, Liu J (2000) Carbon offset potentials of four alternative forest management strategies in Canada: a simulation study. In: Dixon R (ed) Mitigation and adaptation strategies for global change 5. Kluwer Academic Publishers, Dordrecth, pp 143–169

  • Chen J, Colombo SJ, Ter-Mikaelian MT, Heath LS (2008) Future carbon storage in harvested wood products from Ontario’s Crown forests. Can J For Res 38:1947–1958. doi:10.1139/X08-046

    Article  CAS  Google Scholar 

  • Chiang PN, Yu JC, Wang YN, Tzou YM (2010) Effect of nutrient cycle by different thinning practice in temperate forest. In: 19th World congress of soil science, soil solutions for a changing world. Australian Society of Soil Science Inc., Warragul (on DVD)

  • D’Amato AW, Bradford JB, Fraver S, Palik BJ (2011) Forest management for mitigation and adaptation to climate change: insights from long-term silviculture experiments. For Ecol Manag 262:803–816. doi:10.1016/j.foreco.05.014

    Article  Google Scholar 

  • Davis SC, Hessl AE, Scott CJ, Adams MB, Thomas RB (2009) Forest carbon sequestration changes in response to timber harvest. For Ecol Manag 258:2101–2109. doi:10.1016/j.foreco.08.009

    Article  Google Scholar 

  • Dwyer JM, Fensham R, Buckley YM (2010) Restoration thinning accelerates structural development and carbon sequestration in an endangered Australian ecosystem. J Appl Ecol 47:681–691. doi:10.1111/j.1365-2664.01775.x

    Article  Google Scholar 

  • Eriksson E, Gillespie AR, Gustavsson L, Langvall O, Olsson M, Sathre R, Stendahl J (2007) Integrated carbon analysis of forest management practices and wood substitution. Can J For Res 37:671–681. doi:10.1139/X06-257

    Article  CAS  Google Scholar 

  • Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32

    Article  Google Scholar 

  • Fujioka M, Yoshida H (2001) The potential and problems of agricultural ecosystems for birds in Japan. Glob Environ Res 5:151–161

    Google Scholar 

  • Guntiñas ME, Gil-Sotres F, Leirós MC, Trasar-Cepeda C (2013) Sensitivity of soil respiration to moisture and temperature. J Soil Sci Plant Nutr 13:445–461

    Google Scholar 

  • Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    Article  PubMed  Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2006) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268. doi:10.1016/j.geoderma.09.003

    Article  Google Scholar 

  • Jandl R, Vesterdal L, Olsson M, Bens O, Badeck F, Rock J (2007) Carbon sequestration and forest management. CAB Rev Perspect Agric Veter Sci Nutr Nat Res 2:1–16. doi:10.1079/PAVSNNR20072017

    Google Scholar 

  • Johansson M-B (1994) The influence of soil scarification on the turn-over rate of slash needles and nutrient release. Scand J For Res 9:170–179

    Article  Google Scholar 

  • Katakura M, Yamanouchi M, Koyama Y (2007) Carbon stocks and biomass of Japanese larch, red pine, and Quercus forests. And changes in surface soil carbon of Japanese red pine forest after logging. Bull Nagano Pref For Res Center 22:33–55

    Google Scholar 

  • Kato M (2001) ‘SATOYAMA’ and biodiversity conservation: ‘SATOYAMA’ as important insect habitats. Glob Environ Res 5:135–149

    Google Scholar 

  • Kowalski S, Sartore M, Burlett R, Berbigier P, Loustau D (2003) The annual carbon budget of a French pine forest (Pinus pinaster) following harvest. Glob Change Biol 9:1051–1065

    Article  Google Scholar 

  • Kowalski AS, Loustau D, Berbigier P, Manca G, Tedeschi V, Borghetti M, Valentini R, Kolari P, Berninger F, Rannik U, Hari P, Rayment M, Mencuccini M, Moncrieff J (2004) Grace J (2004) Paired comparisons of carbon exchange between undisturbed and regenerating stands in four managed forests in Europe. Glob Change Biol 10:1–17. doi:10.1111/j.1365-2486.00846.x

    Article  Google Scholar 

  • Law BE, Sun OJ, Campbell J, Van Tuyl S, Thornton PE (2003) Change in carbon storage and fluxes in a chronosequence of ponderosa pine. Glob Change Biol 9:510–524

    Article  Google Scholar 

  • Lull HW (1959) Soil compaction on forest and range lands. U.S, Forest Service. Misc Pub 768:1–38

    Google Scholar 

  • Mallik AU, Hu D (1997) Soil respiration following site preparation treatments in boreal mixedwood forest. For Ecol Manag 97:265–275

    Article  Google Scholar 

  • Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302:1385–1387. doi:10.1126/science543

    Article  CAS  PubMed  Google Scholar 

  • Nakatsubo T, Yoshitake S, Uchida M, Uchida M, Shibata Y, Koizumi H (2008) Organic carbon and microbial biomass in a raised beach deposit under terrestrial vegetation in the High Arctic, Ny-Ålesund, Svalbard. Polar Res 27:23–27. doi:10.1111/j.1751-8369.00037.x

    Article  Google Scholar 

  • New Energy Foundation (2008) Biomass engineering handbook. Ohmusya Co., Japan, pp 450–485 (in Japanese)

  • Nunery JS (2009) Keeton WS (2010) Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products. For Ecol Manag 259:1363–1375. doi:10.1016/j.foreco.12.029

    Article  Google Scholar 

  • Palmgren K (1984) Muokkauksen ja kalkituksen aiheuttamia mikrobiologisia muutoksia metsämaassa: microbiological changes in forest soil following soil preparation and liming (in Finnish, English abstract). Folia For 603:1–27

    Google Scholar 

  • Powers M, Kolka R, Palik B, McDonald R, Jurgensen M (2011) Long-term management impacts on carbon storage in Lake States forests. For Ecol Manag 262:424–431. doi:10.101/j.foreco.04.008

    Article  Google Scholar 

  • Qiu S, Bell RW, Hobbs RJ, McComb AJ (2012) Estimating nutrient budgets for prescribed thinning in a regrowth eucalyptus forest in south-west Australia. Forestry 85:51–61. doi:10.1093/forestry/cpr054

    Article  Google Scholar 

  • Ruess RW, Cleve KV, Yarie J, Viereck LA (1996) Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior. Can J For Res 26:1326–1336

    Article  CAS  Google Scholar 

  • Seidl R, Rammer W, Jäger D, Currie WS, Lexer MJ (2007) Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria. For Ecol Manag 248:64–79. doi:10.1016/j.foreco.02.035

    Article  Google Scholar 

  • Shigematsu T (1988) Ecological studies on the secondary forest management for recreational use. Bull Univ Osaka Pref Ser B 40:151–211 (in Japanese with English summary)

    Google Scholar 

  • Swanson ME (2009) Modeling the effects of alternative management strategies on forest carbon in the Nothofagus forests of Tierra del Fuego, Chile. For Ecol Manag 257:1740–1750. doi:10.1016/j.foreco.01.045

    Article  Google Scholar 

  • Takeuchi K (2001) Nature conservation strategies for the ‘SATOYAMA’ and ‘SATOCHI’, habitats for secondary nature in Japan. Glob Environ Res 5:193–198

    Google Scholar 

  • The Japan Institute of Energy (2009) Biomass handbook, 2nd edn. Ohmusya Publishing Co., Tokyo, pp 165–178 (in Japanese)

  • Tomotsune M, Masuda R, Yoshitake S, Anzai T, Koizumi H (2013a) Seasonal and inter-annual variations in contribution ratio of heterotrophic respiration to soil respiration in a cool-temperate deciduous forest. J Geography 122:745–754. doi:10.5026/jgeography.122.745

    Article  CAS  Google Scholar 

  • Tomotsune M, Yoshitake S, Watanabe S, Koizumi H (2013b) Separation of root and heterotrophic respiration within soil respiration by trenching, root biomass regression, and root excising methods in a cool-temperate deciduous forest in Japan. Ecol Res 28:259–269. doi:10.1007/s11284-012-1013-x

    Article  Google Scholar 

  • Wang B, Zha TS, Jia X, Wu B, Zhang YQ, Qin SG (2014) Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem. Biogeosciences 11:259–268. doi:10.5194/bg-11-259-2014

    Article  Google Scholar 

  • Washitani I (2001) Traditional sustainable ecosystem ‘SATOYAMA’ and biodiversity crisis in Japan: conservation ecological perspective. Glob Environ Res 5:119–133

    Google Scholar 

  • Wood TE, Detto M, Silver WL (2013) Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest. PLoS ONE 8:e80965. doi:10.1371/journal.pone.0080965

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Laboratory for Environmental Ecology, Waseda University, for their assistance in field experiments. We also thank the staff of the Karuizawa Seminar House for their great help in the use of the institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kayo Matsushita.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsushita, K., Tomotsune, M., Sakamaki, Y. et al. Effects of management treatments on the carbon cycle of a cool-temperate broad-leaved deciduous forest and its potential as a bioenergy source. Ecol Res 30, 293–302 (2015). https://doi.org/10.1007/s11284-014-1234-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-014-1234-2

Keywords

Navigation