Skip to main content
Log in

Effects of canopy phenology on deciduous overstory and evergreen understory carbon budgets in a cool-temperate forest ecosystem under ongoing climate change

  • Special Feature
  • Long-term and interdisciplinary research on forest ecosystem functions: Challenges at Takayama site since 1993
  • Published:
Ecological Research

Abstract

Canopy phenology is a key regulator of carbon cycling in forest ecosystems. To clarify its possible effects on carbon budgets of forest ecosystems under ongoing climate change, we developed a canopy-phenology model for a forest with deciduous overstory and evergreen understory based on in situ observations, and used it to improve an ecosystem carbon budget model. Under future conditions (2068–2073) based on the IPCC SRES A1B scenario, leaf expansion began 12.5 ± 1.9 days earlier and leaf-fall ended 11.3 ± 2.7 days later than under current conditions (2002–2007). We also estimated the possible influence of altered light availability on understory vegetation. Even though the photosynthetically active period in the understory (i.e., from the end of spring snowmelt to the beginning of late-autumn snow cover) expanded by 15.7 ± 15.7 days, the total downward photosynthetic photon flux density above this vegetation during the snow-free period decreased by 11.8 % because of changing overstory canopy phenology. The net effect of these changes increased ecosystem-level annual gross primary production (GPP) by 12.5 %, net primary production (NPP) by 12.0 %, and net ecosystem production by 12.1 %, especially in late spring (when the highest solar radiation occurred). The increased GPP and NPP were mostly attributable to changes in overstory vegetation. Our analysis indicates that understanding the temporal variation of canopy phenology dynamics and snow cover is important and that the effects of vegetation phenology on the carbon cycle should be evaluated in future climate change studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe S, Nashimoto M, Matsui R, Takeuchi T, Ishii T (2005) Prediction and mapping of cover degree of dwarf bamboo understory by using the GIS and classification tree. Veg Sci 22:103–111 (in Japanese with English abstract)

    Google Scholar 

  • Baldocchi D (2008) ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26. doi:10.1071/bt07151

    Article  CAS  Google Scholar 

  • Bonan GB (1996) A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user’s guide. National Center for Atmospheric Research, Boulder, USA

  • Botta A, Viovy N, Ciais P, Friedlingstein P, Monfray P (2000) A global prognostic scheme of leaf onset using satellite data. Glob Chang Biol 6:709–725. doi:10.1046/j.1365-2486.2000.00362.x

    Article  Google Scholar 

  • Chen X, Xu L (2012) Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. Int J Biometeor 56:695–706. doi:10.1007/s00484-011-0471-0

    Article  Google Scholar 

  • Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013) Experimental warming studies on tree species and forest ecosystems: a literature review. J Plant Res 124:447–460. doi:10.1007/s10265-013-0565-3

    Article  Google Scholar 

  • Churkina G, Schimel D, Braswell BH, Xiao X (2005) Spatial analysis of growing season length control over net ecosystem exchange. Glob Chang Biol 11:1777–1787. doi:10.1111/j.1365-2486.2005.01012.x

    Article  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis, and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136. doi:10.1016/0168-1923(91)90002-8

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Sci 289:2068–2074. doi:10.1126/science.289.5487.2068

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Hadano M, Nasahara KN, Motohka T, Noda HM, Murakami K, Hosaka M (2013) High-resolution prediction of leaf onset date in Japan in the 21st century under the IPCC A1B scenario. Ecol Evol 3:1798–1807. doi:10.1002/ece3.575

    Article  PubMed Central  PubMed  Google Scholar 

  • Inoue T, Nagai S, Saitoh TM, Muraoka H, Nasahara KN, Koizumi H (2014) Detection of the different characteristics of year-to-year variation in foliage phenology among deciduous broad-leaved tree species by using daily continuous canopy surface images. Ecol Inf 22:58–68. doi:10.1016/j.ecoinf.2014.05.009

    Article  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. a special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York

  • Ito A (2010) Evaluation of the impacts of defoliation by tropical cyclones on a Japanese forest’s carbon budget using flux data and a process-based model. J Geophys Res 115:G04013. doi:10.1029/2010jg001314

    Google Scholar 

  • Ito H, Hino T (2004) Effects of deer, mice and dwarf bamboo on the emergence, survival and growth of Abies homolepis (Piceaceae) seedlings. Ecol Res 19:217–223. doi:10.1111/j.1440-1703.2004.00626.x

    Article  Google Scholar 

  • Jeong S-J, Medvigy D, Shevliakova E, Malyshev S (2012) Uncertainties in terrestrial carbon budgets related to spring phenology. J Geophys Res 117:G01030. doi:10.1029/2011jg001868

    Google Scholar 

  • Jia S, Akiyama T (2005) A precise, unified method for estimating carbon storage in cool-temperate deciduous forest ecosystems. Agric For Meteorol 134:70–80. doi:10.1016/j.agrformet.2005.08.014

    Article  Google Scholar 

  • Maki M, Goto S, Ishihara M, Nishida K, Kojima T, Akiyama T (2008) Mapping the potential distribution of dwarf bamboo using satellite imagery and DEM. J Remote Sens Soc Jpn 28:28–35. doi:10.11440/rssj.28.28 (in Japanese with English abstract)

    Google Scholar 

  • Matsumoto K, Ohta T, Irasawa M, Nakamura T (2003) Climate change and extension of the Ginkgo biloba L. growing season in Japan. Glob Chang Biol 9:1634–1642. doi:10.1046/j.1529-8817.2003.00688.x

    Article  Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659. doi:10.1038/17709

    Article  CAS  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski F-E, Zach S, Zust ANA (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976. doi:10.1111/j.1365-2486.2006.01193.x

    Article  Google Scholar 

  • Michihiro Y, Sato Y, Suzuki Y (2011) Evaluation of reproducibility and uncertainty for surface meteorological elements over Japanese land area by the CMIP3 multi-climate models. J Jpn Soc Hydrol Water Resour 24:280–291. doi:10.3178/jjshwr.24.280 (in Japanese with English abstract)

    Article  Google Scholar 

  • Morin X, Lechowicz MJ, Augspurger C, O’Keefe J, Viner D, Chuine I (2009) Leaf phenology in 22 North American tree species during the 21st century. Glob Chang Biol 15:961–975. doi:10.1111/j.1365-2486.2008.01735.x

    Article  Google Scholar 

  • Muraoka H, Saigusa N, Nasahara KN, Noda H, Yoshino J, Saitoh TM, Nagai S, Murayama S, Koizumi H (2010) Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan. J Plant Res 123:563–576. doi:10.1007/s10265-009-0270-4

    Article  CAS  PubMed  Google Scholar 

  • Nagai S, Saitoh TM, Kurumado K, Tamagawa I, Kobayashi H, Inoue T, Suzuki R, Gamo M, Muraoka H, Nasahara KN (2013) Detection of bio-meteorological year-to-year variation by using digital canopy surface images of a deciduous broad-leaved forest. SOLA 9:106–110. doi:10.2151/sola.2013-024

    Article  Google Scholar 

  • Nagai S, Saitoh TM, Nasahara KN, Suzuki R (2014) Spatio-temporal distribution of the timing of start and end of growing season along vertical and horizontal gradients in Japan. Int J Biometeor. doi:10.1007/s00484-014-0822-8

    Google Scholar 

  • Nasahara KN, Muraoka H, Nagai S, Mikami H (2008) Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest. Agric For Meteorol 148:1136–1146. doi:10.1016/j.agrformet.2008.02.011

    Article  Google Scholar 

  • Noda HM, Muraoka H, Nasahara KN, Saigusa N, Murayama S, Koizumi H (2014) Phenology of leaf morphological, photosynthetic, and nitrogen use characteristics of canopy trees in a cool-temperate deciduous broadleaf forest at Takayama, central Japan. Ecol Res. doi:10.1007/s11284-014-1222-6

    Google Scholar 

  • Ohtsuka T, Akiyama T, Hashimoto Y, Inatomi M, Sakai T, Jia S, Mo W, Tsuda S, Koizumi H (2005) Biometric based estimates of net primary production (NPP) in a cool-temperate deciduous forest stand beneath a flux tower. Agric For Meteorol 134:27–38. doi:10.1016/j.agrformet.2005.11.005

    Article  Google Scholar 

  • Ohtsuka T, Mo W, Satomura T, Inatomi M, Koizumi H (2007) Biometric based carbon flux measurements and net ecosystem production (NEP) in a temperate deciduous broad-leaved forest beneath a flux tower. Ecosyst 10:324–334. doi:10.1007/s10021-007-9017-z

    Article  CAS  Google Scholar 

  • Ohtsuka T, Saigusa N, Koizumi H (2009) On linking multiyear biometric measurements of tree growth with eddy covariance-based net ecosystem production. Glob Chang Biol 15:1015–1024. doi:10.1111/j.1365-2486.2008.01800.x

    Article  Google Scholar 

  • Piao S, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007) Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob Biogeochem Cycles 21:3018. doi:10.1029/2006gb002888

    Google Scholar 

  • Polgar CA, Primack RB (2011) Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol 191:926–941. doi:10.1111/j.1469-8137.2011.03803.x

    Article  PubMed  Google Scholar 

  • Polgar CA, Primack RB (2013) Leaf out phenology in temperate forests. Biodivers Sci 21:111–116. doi:10.3724/SP.J.1003.2013.06187

    Article  Google Scholar 

  • Richardson AD, Bailey AS, Denny EG, Martin CW, O’Keefe J (2006) Phenology of a northern hardwood forest canopy. Glob Chang Biol 12:1174–1188. doi:10.1111/j.1365-2486.2006.01164.x

    Article  Google Scholar 

  • Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O’Keefe J (2009) Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol 29:321–331. doi:10.1093/treephys/tpn040

    Article  CAS  PubMed  Google Scholar 

  • Richardson AD, Anderson RS, Arain MA, Barr AG, Bohrer G, Chen G, Chen JM, Ciais P, Davis KJ, Desai AR, Dietze MC, Dragoni D, Garrity SR, Gough CM, Grant R, Hollinger DY, Margolis HA, McCaughey H, Migliavacca M, Monson RK, Munger JW, Poulter B, Raczka BM, Ricciuto DM, Sahoo AK, Schaefer K, Tian H, Vargas R, Verbeeck H, Xiao J, Xue Y (2012) Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob Chang Biol 18:566–584. doi:10.1111/j.1365-2486.2011.02562.x

    Article  Google Scholar 

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173. doi:10.1016/j.agrformet.2012.09.012

    Article  Google Scholar 

  • Saigusa N, Yamamoto S, Murayama S, Kondo H, Nishimura N (2002) Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agric For Meteorol 112:203–215. doi:10.1016/S0168-1923(02)00082-5

    Article  Google Scholar 

  • Saitoh TM, Nagai S, Noda HM, Muraoka H, Nasahara KN (2012a) Examination of the extinction coefficient in the Beer-Lambert law for an accurate estimation of the forest canopy leaf area index. For Sci Technol 8:67–76. doi:10(1080/21580103),2012,673744

    Google Scholar 

  • Saitoh TM, Nagai S, Yoshino J, Muraoka H, Saigusa N, Tamagawa I (2012b) Functional consequences of differences in canopy phenology for the carbon budgets of two cool-temperate forest types: simulations using the NCAR/LSM and validation using tower flux and biometric data. Eurasian J For Res 15:19–30

    Google Scholar 

  • Sakai T, Akiyama T, Saigusa N, Yamamoto S, Yasuoka Y (2006) The contribution of gross primary production of understory dwarf bamboo, Sasa senanensis, in a cool-temperate deciduous broadleaved forest in central Japan. For Ecol Manag 236:259–267. doi:10.1016/j.foreco.2006.09.022

    Article  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12:343–351. doi:10.1111/j.1365-2486.2005.01097.x

    Article  Google Scholar 

  • Takagi K, Fukuzawa K, Liang N, Kayama M, Nomura M, Hojyo H, Sugata S, Shibata H, Fukazawa T, Takahashi Y, Nakaji T, Oguma H, Mano M, Akibayashi Y, Murayama T, Koike T, Sasa K, Fujinuma Y (2009) Change in CO2 balance under a series of forestry activities in a cool-temperate mixed forest with dense undergrowth. Glob Chang Biol 15:1275–1288. doi:10.1111/j.1365-2486.2008.01795.x

    Article  Google Scholar 

  • Tang CQ, Li T, Zhu X (2007) Structure and regeneration dynamics of three subtropical midmontane moist evergreen broad-leaved forests in southwestern China, with special reference to bamboo in the forest understories. Can J For Res 37:2701–2714. doi:10.1139/X07-101

    Article  Google Scholar 

  • Thornley JHM (1976) Mathematical models in plant physiology. Academic Press, London

    Google Scholar 

  • Vitasse Y, Delzon S, Dufrêne E, Pontailler J-Y, Louvet J-M, Kremer A, Michalet R (2009a) Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses? Agric For Meteorol 149:735–744. doi:10.1016/j.agrformet.2008.10.019

    Article  Google Scholar 

  • Vitasse Y, Porte AJ, Kremer A, Michalet R, Delzon S (2009b) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161:187–198. doi:10.1007/s00442-009-1363-4

    Article  PubMed  Google Scholar 

  • Wu C, Chen JM, Black TA, Price DT, Kurz WA, Desai AR, Gonsamo A, Jassal RS, Gough CM, Bohrer G, Dragoni D, Herbst M, Gielen B, Berninger F, Vesala T, Mammarella I, Pilegaard K, Blanken PD (2013a) Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Glob Ecol Biogeogr 22:994–1006. doi:10.1111/geb.12044

    Article  Google Scholar 

  • Wu C, Gough CM, Chen JM, Gonsamo A (2013b) Evidence of autumn phenology control on annual net ecosystem productivity in two temperate deciduous forests. Ecol Eng 60:88–95. doi:10.1016/j.ecoleng.2013.07.019

    Article  Google Scholar 

  • Yashiro Y, Shizu Y, Adachi T, Ohtsuka T, Lee N-Y, Iimura Y, Koizumi H (2012) The effect of dense understory dwarf bamboo (Sasa senanensis) on soil respiration before and after clearcutting of cool temperate deciduous broad-leaved forest. Ecol Res 27:577–586. doi:10.1007/s11284-012-0925-9

    Article  Google Scholar 

Download references

Acknowledgments

We thank S. Murayama of the National Institute of Advanced Industrial Science and Technology and N. Saigusa of the National Institute for Environmental Studies for providing detailed meteorological and eddy-covariance data for TKY. This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI program (Grant numbers 23710005 and 24241008) and by the JSPS Funding Program for Next Generation World-Leading Researchers (principal investigator H.M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku M. Saitoh.

Appendix: photosynthetic and respiration components for the overstory vegetation

Appendix: photosynthetic and respiration components for the overstory vegetation

NCAR LSM is a sun and shade model. The sunlit fraction (f sun) of the canopy is based on the fractional area of sunflecks on a horizontal plane below leaf and stem areas and on scattering within the canopy. The shaded fraction (f shade) equals 1.0 minus the sunlit fraction, and the sunlit and shaded LAIs are [L sun = f sun L] and [L shade = f shade L], respectively, where L represents LAI. Bonan (1996) provides details of the calculation of incident solar radiation at canopy level and of the energy budget resulting from the radiation and water vapor balances. The photosynthetic part of LSM (Bonan 1996) is based on the parameterizations of Farquhar et al. (1980) and Collatz et al. (1991). Single-leaf photosynthesis of C3 plants is controlled by the RuBP carboxylase-limited rate of carboxylation, maximum rate of carboxylation allowed by the capacity to regenerate RuBP, and the export-limited rate of carboxylation. The photosynthetic rate is coupled to the parameterization of stomatal resistance (Collatz et al. 1991) and is hence an integral part of the surface energy fluxes. These calculations are made for both the sunlit and shaded parts of the canopy (A sun and A shade) and are summed for the entire overstory canopy as \(\left[ {{\text{GPP}}_{\text{o}} = A_{\text{sun}} \cdot L_{\text{sun}} + A_{\text{shade}} \cdot L_{\text{shade}} } \right]\).

Overstory deciduous plant respiration is separated into maintenance and growth respiration. Total maintenance respiration in the LSM is determined by the sum of foliar, stem, and root respiration as functions of leaf area index (m2 m–2) and temperature. Parameters are defined for foliar respiration at 25 °C (μmol CO2 m−2 s−1), stem biomass (kg m−2), stem respiration at 25 °C (μmol CO2 kg–1 s–1), root biomass (kg m−2), root respiration at 25 °C (μmol CO2 kg−1 s−1), and temperature sensitivity. Growth respiration is proportional to overstory net primary production (NPPo).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saitoh, T.M., Nagai, S., Yoshino, J. et al. Effects of canopy phenology on deciduous overstory and evergreen understory carbon budgets in a cool-temperate forest ecosystem under ongoing climate change. Ecol Res 30, 267–277 (2015). https://doi.org/10.1007/s11284-014-1229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-014-1229-z

Keywords

Navigation