Ecological Research

, Volume 30, Issue 2, pp 267–277 | Cite as

Effects of canopy phenology on deciduous overstory and evergreen understory carbon budgets in a cool-temperate forest ecosystem under ongoing climate change

  • Taku M. Saitoh
  • Shin Nagai
  • Jun Yoshino
  • Hiroaki Kondo
  • Ichiro Tamagawa
  • Hiroyuki Muraoka
Special Feature Long-term and interdisciplinary research on forest ecosystem functions: Challenges at Takayama site since 1993

Abstract

Canopy phenology is a key regulator of carbon cycling in forest ecosystems. To clarify its possible effects on carbon budgets of forest ecosystems under ongoing climate change, we developed a canopy-phenology model for a forest with deciduous overstory and evergreen understory based on in situ observations, and used it to improve an ecosystem carbon budget model. Under future conditions (2068–2073) based on the IPCC SRES A1B scenario, leaf expansion began 12.5 ± 1.9 days earlier and leaf-fall ended 11.3 ± 2.7 days later than under current conditions (2002–2007). We also estimated the possible influence of altered light availability on understory vegetation. Even though the photosynthetically active period in the understory (i.e., from the end of spring snowmelt to the beginning of late-autumn snow cover) expanded by 15.7 ± 15.7 days, the total downward photosynthetic photon flux density above this vegetation during the snow-free period decreased by 11.8 % because of changing overstory canopy phenology. The net effect of these changes increased ecosystem-level annual gross primary production (GPP) by 12.5 %, net primary production (NPP) by 12.0 %, and net ecosystem production by 12.1 %, especially in late spring (when the highest solar radiation occurred). The increased GPP and NPP were mostly attributable to changes in overstory vegetation. Our analysis indicates that understanding the temporal variation of canopy phenology dynamics and snow cover is important and that the effects of vegetation phenology on the carbon cycle should be evaluated in future climate change studies.

Keywords

Canopy phenology Carbon budget Climate change Snow cover Understory vegetation 

References

  1. Abe S, Nashimoto M, Matsui R, Takeuchi T, Ishii T (2005) Prediction and mapping of cover degree of dwarf bamboo understory by using the GIS and classification tree. Veg Sci 22:103–111 (in Japanese with English abstract)Google Scholar
  2. Baldocchi D (2008) ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26. doi:10.1071/bt07151 CrossRefGoogle Scholar
  3. Bonan GB (1996) A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user’s guide. National Center for Atmospheric Research, Boulder, USAGoogle Scholar
  4. Botta A, Viovy N, Ciais P, Friedlingstein P, Monfray P (2000) A global prognostic scheme of leaf onset using satellite data. Glob Chang Biol 6:709–725. doi:10.1046/j.1365-2486.2000.00362.x CrossRefGoogle Scholar
  5. Chen X, Xu L (2012) Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. Int J Biometeor 56:695–706. doi:10.1007/s00484-011-0471-0 CrossRefGoogle Scholar
  6. Chung H, Muraoka H, Nakamura M, Han S, Muller O, Son Y (2013) Experimental warming studies on tree species and forest ecosystems: a literature review. J Plant Res 124:447–460. doi:10.1007/s10265-013-0565-3 CrossRefGoogle Scholar
  7. Churkina G, Schimel D, Braswell BH, Xiao X (2005) Spatial analysis of growing season length control over net ecosystem exchange. Glob Chang Biol 11:1777–1787. doi:10.1111/j.1365-2486.2005.01012.x CrossRefGoogle Scholar
  8. Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis, and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136. doi:10.1016/0168-1923(91)90002-8 CrossRefGoogle Scholar
  9. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Sci 289:2068–2074. doi:10.1126/science.289.5487.2068 CrossRefGoogle Scholar
  10. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRefPubMedGoogle Scholar
  11. Hadano M, Nasahara KN, Motohka T, Noda HM, Murakami K, Hosaka M (2013) High-resolution prediction of leaf onset date in Japan in the 21st century under the IPCC A1B scenario. Ecol Evol 3:1798–1807. doi:10.1002/ece3.575 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Inoue T, Nagai S, Saitoh TM, Muraoka H, Nasahara KN, Koizumi H (2014) Detection of the different characteristics of year-to-year variation in foliage phenology among deciduous broad-leaved tree species by using daily continuous canopy surface images. Ecol Inf 22:58–68. doi:10.1016/j.ecoinf.2014.05.009 CrossRefGoogle Scholar
  13. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. a special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  14. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  15. Ito A (2010) Evaluation of the impacts of defoliation by tropical cyclones on a Japanese forest’s carbon budget using flux data and a process-based model. J Geophys Res 115:G04013. doi:10.1029/2010jg001314 Google Scholar
  16. Ito H, Hino T (2004) Effects of deer, mice and dwarf bamboo on the emergence, survival and growth of Abies homolepis (Piceaceae) seedlings. Ecol Res 19:217–223. doi:10.1111/j.1440-1703.2004.00626.x CrossRefGoogle Scholar
  17. Jeong S-J, Medvigy D, Shevliakova E, Malyshev S (2012) Uncertainties in terrestrial carbon budgets related to spring phenology. J Geophys Res 117:G01030. doi:10.1029/2011jg001868 Google Scholar
  18. Jia S, Akiyama T (2005) A precise, unified method for estimating carbon storage in cool-temperate deciduous forest ecosystems. Agric For Meteorol 134:70–80. doi:10.1016/j.agrformet.2005.08.014 CrossRefGoogle Scholar
  19. Maki M, Goto S, Ishihara M, Nishida K, Kojima T, Akiyama T (2008) Mapping the potential distribution of dwarf bamboo using satellite imagery and DEM. J Remote Sens Soc Jpn 28:28–35. doi:10.11440/rssj.28.28 (in Japanese with English abstract)Google Scholar
  20. Matsumoto K, Ohta T, Irasawa M, Nakamura T (2003) Climate change and extension of the Ginkgo biloba L. growing season in Japan. Glob Chang Biol 9:1634–1642. doi:10.1046/j.1529-8817.2003.00688.x CrossRefGoogle Scholar
  21. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659. doi:10.1038/17709 CrossRefGoogle Scholar
  22. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski F-E, Zach S, Zust ANA (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976. doi:10.1111/j.1365-2486.2006.01193.x CrossRefGoogle Scholar
  23. Michihiro Y, Sato Y, Suzuki Y (2011) Evaluation of reproducibility and uncertainty for surface meteorological elements over Japanese land area by the CMIP3 multi-climate models. J Jpn Soc Hydrol Water Resour 24:280–291. doi:10.3178/jjshwr.24.280 (in Japanese with English abstract)CrossRefGoogle Scholar
  24. Morin X, Lechowicz MJ, Augspurger C, O’Keefe J, Viner D, Chuine I (2009) Leaf phenology in 22 North American tree species during the 21st century. Glob Chang Biol 15:961–975. doi:10.1111/j.1365-2486.2008.01735.x CrossRefGoogle Scholar
  25. Muraoka H, Saigusa N, Nasahara KN, Noda H, Yoshino J, Saitoh TM, Nagai S, Murayama S, Koizumi H (2010) Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan. J Plant Res 123:563–576. doi:10.1007/s10265-009-0270-4 CrossRefPubMedGoogle Scholar
  26. Nagai S, Saitoh TM, Kurumado K, Tamagawa I, Kobayashi H, Inoue T, Suzuki R, Gamo M, Muraoka H, Nasahara KN (2013) Detection of bio-meteorological year-to-year variation by using digital canopy surface images of a deciduous broad-leaved forest. SOLA 9:106–110. doi:10.2151/sola.2013-024 CrossRefGoogle Scholar
  27. Nagai S, Saitoh TM, Nasahara KN, Suzuki R (2014) Spatio-temporal distribution of the timing of start and end of growing season along vertical and horizontal gradients in Japan. Int J Biometeor. doi:10.1007/s00484-014-0822-8 Google Scholar
  28. Nasahara KN, Muraoka H, Nagai S, Mikami H (2008) Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest. Agric For Meteorol 148:1136–1146. doi:10.1016/j.agrformet.2008.02.011 CrossRefGoogle Scholar
  29. Noda HM, Muraoka H, Nasahara KN, Saigusa N, Murayama S, Koizumi H (2014) Phenology of leaf morphological, photosynthetic, and nitrogen use characteristics of canopy trees in a cool-temperate deciduous broadleaf forest at Takayama, central Japan. Ecol Res. doi:10.1007/s11284-014-1222-6 Google Scholar
  30. Ohtsuka T, Akiyama T, Hashimoto Y, Inatomi M, Sakai T, Jia S, Mo W, Tsuda S, Koizumi H (2005) Biometric based estimates of net primary production (NPP) in a cool-temperate deciduous forest stand beneath a flux tower. Agric For Meteorol 134:27–38. doi:10.1016/j.agrformet.2005.11.005 CrossRefGoogle Scholar
  31. Ohtsuka T, Mo W, Satomura T, Inatomi M, Koizumi H (2007) Biometric based carbon flux measurements and net ecosystem production (NEP) in a temperate deciduous broad-leaved forest beneath a flux tower. Ecosyst 10:324–334. doi:10.1007/s10021-007-9017-z CrossRefGoogle Scholar
  32. Ohtsuka T, Saigusa N, Koizumi H (2009) On linking multiyear biometric measurements of tree growth with eddy covariance-based net ecosystem production. Glob Chang Biol 15:1015–1024. doi:10.1111/j.1365-2486.2008.01800.x CrossRefGoogle Scholar
  33. Piao S, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007) Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob Biogeochem Cycles 21:3018. doi:10.1029/2006gb002888 Google Scholar
  34. Polgar CA, Primack RB (2011) Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol 191:926–941. doi:10.1111/j.1469-8137.2011.03803.x CrossRefPubMedGoogle Scholar
  35. Polgar CA, Primack RB (2013) Leaf out phenology in temperate forests. Biodivers Sci 21:111–116. doi:10.3724/SP.J.1003.2013.06187 CrossRefGoogle Scholar
  36. Richardson AD, Bailey AS, Denny EG, Martin CW, O’Keefe J (2006) Phenology of a northern hardwood forest canopy. Glob Chang Biol 12:1174–1188. doi:10.1111/j.1365-2486.2006.01164.x CrossRefGoogle Scholar
  37. Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O’Keefe J (2009) Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol 29:321–331. doi:10.1093/treephys/tpn040 CrossRefPubMedGoogle Scholar
  38. Richardson AD, Anderson RS, Arain MA, Barr AG, Bohrer G, Chen G, Chen JM, Ciais P, Davis KJ, Desai AR, Dietze MC, Dragoni D, Garrity SR, Gough CM, Grant R, Hollinger DY, Margolis HA, McCaughey H, Migliavacca M, Monson RK, Munger JW, Poulter B, Raczka BM, Ricciuto DM, Sahoo AK, Schaefer K, Tian H, Vargas R, Verbeeck H, Xiao J, Xue Y (2012) Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob Chang Biol 18:566–584. doi:10.1111/j.1365-2486.2011.02562.x CrossRefGoogle Scholar
  39. Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173. doi:10.1016/j.agrformet.2012.09.012 CrossRefGoogle Scholar
  40. Saigusa N, Yamamoto S, Murayama S, Kondo H, Nishimura N (2002) Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agric For Meteorol 112:203–215. doi:10.1016/S0168-1923(02)00082-5 CrossRefGoogle Scholar
  41. Saitoh TM, Nagai S, Noda HM, Muraoka H, Nasahara KN (2012a) Examination of the extinction coefficient in the Beer-Lambert law for an accurate estimation of the forest canopy leaf area index. For Sci Technol 8:67–76. doi:10(1080/21580103),2012,673744Google Scholar
  42. Saitoh TM, Nagai S, Yoshino J, Muraoka H, Saigusa N, Tamagawa I (2012b) Functional consequences of differences in canopy phenology for the carbon budgets of two cool-temperate forest types: simulations using the NCAR/LSM and validation using tower flux and biometric data. Eurasian J For Res 15:19–30Google Scholar
  43. Sakai T, Akiyama T, Saigusa N, Yamamoto S, Yasuoka Y (2006) The contribution of gross primary production of understory dwarf bamboo, Sasa senanensis, in a cool-temperate deciduous broadleaved forest in central Japan. For Ecol Manag 236:259–267. doi:10.1016/j.foreco.2006.09.022 CrossRefGoogle Scholar
  44. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12:343–351. doi:10.1111/j.1365-2486.2005.01097.x CrossRefGoogle Scholar
  45. Takagi K, Fukuzawa K, Liang N, Kayama M, Nomura M, Hojyo H, Sugata S, Shibata H, Fukazawa T, Takahashi Y, Nakaji T, Oguma H, Mano M, Akibayashi Y, Murayama T, Koike T, Sasa K, Fujinuma Y (2009) Change in CO2 balance under a series of forestry activities in a cool-temperate mixed forest with dense undergrowth. Glob Chang Biol 15:1275–1288. doi:10.1111/j.1365-2486.2008.01795.x CrossRefGoogle Scholar
  46. Tang CQ, Li T, Zhu X (2007) Structure and regeneration dynamics of three subtropical midmontane moist evergreen broad-leaved forests in southwestern China, with special reference to bamboo in the forest understories. Can J For Res 37:2701–2714. doi:10.1139/X07-101 CrossRefGoogle Scholar
  47. Thornley JHM (1976) Mathematical models in plant physiology. Academic Press, LondonGoogle Scholar
  48. Vitasse Y, Delzon S, Dufrêne E, Pontailler J-Y, Louvet J-M, Kremer A, Michalet R (2009a) Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses? Agric For Meteorol 149:735–744. doi:10.1016/j.agrformet.2008.10.019 CrossRefGoogle Scholar
  49. Vitasse Y, Porte AJ, Kremer A, Michalet R, Delzon S (2009b) Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161:187–198. doi:10.1007/s00442-009-1363-4 CrossRefPubMedGoogle Scholar
  50. Wu C, Chen JM, Black TA, Price DT, Kurz WA, Desai AR, Gonsamo A, Jassal RS, Gough CM, Bohrer G, Dragoni D, Herbst M, Gielen B, Berninger F, Vesala T, Mammarella I, Pilegaard K, Blanken PD (2013a) Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Glob Ecol Biogeogr 22:994–1006. doi:10.1111/geb.12044 CrossRefGoogle Scholar
  51. Wu C, Gough CM, Chen JM, Gonsamo A (2013b) Evidence of autumn phenology control on annual net ecosystem productivity in two temperate deciduous forests. Ecol Eng 60:88–95. doi:10.1016/j.ecoleng.2013.07.019 CrossRefGoogle Scholar
  52. Yashiro Y, Shizu Y, Adachi T, Ohtsuka T, Lee N-Y, Iimura Y, Koizumi H (2012) The effect of dense understory dwarf bamboo (Sasa senanensis) on soil respiration before and after clearcutting of cool temperate deciduous broad-leaved forest. Ecol Res 27:577–586. doi:10.1007/s11284-012-0925-9 CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2014

Authors and Affiliations

  • Taku M. Saitoh
    • 1
  • Shin Nagai
    • 2
  • Jun Yoshino
    • 3
  • Hiroaki Kondo
    • 4
  • Ichiro Tamagawa
    • 1
  • Hiroyuki Muraoka
    • 1
  1. 1.River Basin Research CenterGifu UniversityGifuJapan
  2. 2.Department of Environmental Geochemical Cycle ResearchJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  3. 3.Graduate School of EngineeringGifu UniversityGifuJapan
  4. 4.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations