Ecological Research

, Volume 30, Issue 2, pp 279–292 | Cite as

Estimation of annual spatial variations in forest production and crop yields at landscape scale in temperate climate regions

  • M. Ruidisch
  • T. T. Nguyen
  • Y. L. Li
  • R. Geyer
  • J. Tenhunen
Special Feature Long-term and interdisciplinary research on forest ecosystem functions: Challenges at Takayama site since 1993

Abstract

Simulating regional variations in gross primary production (GPP) and yields of major land cover types is complex due to differences in plant physiological properties, landscape topography, and climate gradients. In our study, we analyzed the inter-annual and inter-regional variation, as well as the effect of summer drought, on gross primary production and crop yields of 9 major land uses within the state-funded Bioenergy Region Bayreuth in Germany. We developed a simulation framework using a process based model which accounts for variations in both CO2 gas exchange, and in the case of crops, growth processes. The results indicated a severe impact of summer drought on GPP, particularly of forests and grasslands. Yields of winter crops, early planted summer grain crops as well as the perennial 2nd generation biofuel crop Silphium perfoliatum, on the other hand, were buffered despite drought by comparatively mild winter and spring temperatures. We estimated regional yield increases from SW to NE, suggesting a comparative advantage for these crops in the cooler and upland part of the region. In contrast, grasslands and annual summer crops such as maize and potato did not exhibit any apparent regional pattern in the simulations. The 2nd generation bioenergy crop exhibited significantly higher GPP and yields compared to the conventional bioenergy crop maize, suggesting that cultivation of S. perfoliatum should be increased for economic and environmental reasons, but additional study of the growth of S. perfoliatum is still required.

Keywords

Photosynthesis Bioenergy production Plant growth model Spatial analysis Climate change Drought 

Supplementary material

11284_2014_1208_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1102 kb)

References

  1. Adiku S, Reichstein M, Lohila A, Dinh NQ, Aurela M, Laurila T, Lueers J, Tenhunen JD (2006) PIXGRO: a model for simulating the ecosystem CO2 exchange and growth of spring barley. Ecol Model 190:260–276CrossRefGoogle Scholar
  2. Bavarian State Agency for Statistics and Data Processing (2012) In: Regionalentwicklungskonzept der Bioenergieregion Bayreuth, Fortschreibung 2012–2015. Regionalmanagement Stadt und Landkreis Bayreuth GbR, Bayreuth, pp 3–17Google Scholar
  3. Bringezu S, Schütz H, Arnold K, Merten F, Kabasci S, Borelbach P, Michels C, Reinhardt GA, Rettenmaier N (2009) Global implications of biomass and biofuel use in Germany—recent trends and future scenarios for domestic and foreign agricultural land use and resulting GHG emissions. J Clean Prod 17:S57–S68CrossRefGoogle Scholar
  4. Brown PW (1989) Cooperative extension 8915. University of Arizona, Heat unitsGoogle Scholar
  5. Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, de Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533CrossRefPubMedGoogle Scholar
  6. Core Team R R (2013) A language and environment for statistical computing. R Foundation for statistical computing, ViennaGoogle Scholar
  7. Diekmann M (1996) Relationship between flowering phenology of perennial herbs and meteorological data in deciduous forests of Sweden. Can J Bot 74:528–537CrossRefGoogle Scholar
  8. Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190CrossRefPubMedGoogle Scholar
  9. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238CrossRefPubMedGoogle Scholar
  10. Farquhar GD, Caemmerer S (1982) Modelling of photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II, 12/B. Springer, Berlin Heidelberg, pp 549–587CrossRefGoogle Scholar
  11. Fritsche UR, Sims REH, Monti A (2010) Direct and indirect land-use competition issues for energy crops and their sustainable production—an overview. Biofuels Bioprod Bioref 4:692–704CrossRefGoogle Scholar
  12. Granier A, Bréda N, Longdoz B, Gross P, Ngao J (2008) Ten years of fluxes and stand growth in a young beech forest at Hesse, North-eastern France. Ann For Sci 65:704CrossRefGoogle Scholar
  13. Hackett C, Carolane J (1982) Introduction and crop profiles. In: Hackett C, Carolane J (eds) Edible horticultural crops: a compendium on information on fruit, vegetable, spice and nut species. Press, Sydney, Australia, AcadGoogle Scholar
  14. Harley PC, Tenhunen JD (1991) Modeling the photosynthetic response of C3 leaves to environmental factors. In: Boote KJ, Loomis RS (eds) Modeling crop photosynthesis—from biochemistry to canopy. Anaheim, California, pp 17–39Google Scholar
  15. Hussain MZ, Grünwald T, Tenhunen JD, Li YL, Mirzae H, Bernhofer C, Otieno D, Dinh NQ, Schmidt M, Wartinger M, Owen K (2011) Summer drought influence on CO2 and water fluxes of extensively managed grassland in Germany. Agric Ecosyst Environ 141:67–76CrossRefGoogle Scholar
  16. Hutchinson GK, Richards K, Risk WH (2000) Aspects of accumulated heat patterns (growing degree-days) and pasture growth in Southland. Proc NZ Grassl Assoc 62:81–85Google Scholar
  17. Kang S, Post WM, Nichols JA, Wang D, West TO, Bandaru V, Izaurralde RC (2013) Marginal lands: concepts, assessment and management. J Agr Sci 5:129–139Google Scholar
  18. Kiniry JR, Williams JR, Major DJ, Izaurralde RC, Gassman PW, Morrison M, Bergentine R, Zentner RP (1995) EPIC model parameters for cereal, oilseed, and forage crops in the northern Great Plains region. Can J Plant Sci 75:679–688CrossRefGoogle Scholar
  19. Levy PE, Grelle A, Lindroth A, Mölder M, Jarvis PG, Kruijt B, Moncrieff JB (1999) Regional-scale CO2 fluxes over central Sweden by a boundary layer budget method. Agricult Forest Meteorol 98–99:169–180CrossRefGoogle Scholar
  20. Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze E, Wingate L, Matteucci G, Aragao L, Aubinet M, Beer C, Bernhofer C, Black KG, Bonal D, Bonnefond J, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grünwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolari P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Lemaire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith M, Tang J, Valentini R, Vesala T, Janssens IA (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biol 13:2509–2537CrossRefGoogle Scholar
  21. Luyssaert S, Ciais P, Piao SL, Schulze E, Jung M, Zaehle S, Schelhaas MJ, Reichstein M, Churkina G, Papale D, Abril G, Beer C, Grace J, Loustau D, Matteucci G, Magnani F, Nabuurs GJ, Verbeeck H, Sulkava M, Van Der Werf GR, Janssens IA (2010) The European carbon balance. Part 3: forests. Global Change Biol 16:1429–1450CrossRefGoogle Scholar
  22. Mendham NJ, Shipway PA, Scott RK (1981) The effects of delayed sowing and weather on growth, development and yield of winter oil-seed rape (Brassica napus). J Agr Sci 96:389–416CrossRefGoogle Scholar
  23. Muraoka H, Saigusa N, Nasahara KN, Noda H, Yoshino J, Saitoh TM, Nagai S, Murayama S, Koizumi H (2010) Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan. J Plant Res 123:563–576CrossRefPubMedGoogle Scholar
  24. Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2009) Soil and Water Assessment Tool. Theoretical Documentation Version 2009, Texas Water Resources Institute Technical Report No. 406. Texas, pp 1–618Google Scholar
  25. Nguyen TT, Tenhunen JD (2013) Review of integrated ecological-economic analyses for bioenergy plants under climate change at local scale. Int J Clim Change Strateg Manag 5:324–343CrossRefGoogle Scholar
  26. Olesen JE, Bindi M (2002) Consequences of climate change for european agricultural productivity, land use and policy. Eur J Agron 16:239–262CrossRefGoogle Scholar
  27. Olesen JE, Trnka M, Kersebaum KC, Skjelvåg AO, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J, Micale F (2011) Impacts and adaptation of european crop production systems to climate change. Eur J Agron 34:96–112CrossRefGoogle Scholar
  28. Rebetez M, Mayer H, Dupont O, Schindler D, Gartner K, Kropp JP, Menzel A (2006) Heat and drought 2003 in Europe: a climate synthesis. Ann For Sci 63:569–577CrossRefGoogle Scholar
  29. Rötter R, van de Geijn SC (1999) Climate change effects on plant growth, crop yield and livestock. Clim Change 43:651–681CrossRefGoogle Scholar
  30. Rouault G, Candau JN, Lieutier F, Nageleisen LM, Martin JC, Warzée N (2006) Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann For Sci 63:613–624CrossRefGoogle Scholar
  31. Shurpali NJ, Hyvönen NP, Huttunen JT, Clement RJ, Reichstein M, Nykänen H, Biasi C, Martikainen PJ (2009) Cultivation of a perennial grass for bioenergy on a boreal organic soil—carbon sink or source? Global Change Biol Bioenergy 1:35–50CrossRefGoogle Scholar
  32. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Le Roy Miller H Jr, Chen Z (2007) Climate Change 2007. The physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, Cambridge University PressGoogle Scholar
  33. Tenhunen J (2013) Relating forest ecosystem flux studies to regional ecosystem services. In: Synthesis workshop on the carbon budget and forest ecosystem in the Asian Monitoring Network—the 20th Anniversary of the Takayama Site, Japan. Hida Earth Wisdom Center Takayama, pp 40–43Google Scholar
  34. Tenhunen J, Geyer R, Adiku S, Reichstein M, Tappeiner U, Bahn M, Cernusca A, Dinh NQ, Kolcun O, Lohila A, Otieno D, Schmidt M, Schmitt M, Wang Q, Wartinger M, Wohlfahrt G (2009) Influences of changing land use and CO2 concentration on ecosystem and landscape level carbon and water balances in mountainous terrain of the Stubai Valley, Austria. Global Planet Change 67:29–43CrossRefGoogle Scholar
  35. Titei V, Teleuta A, Muntean A (2013) The perspective of cultivation and utilization of the species Silphium Perfoliatum L. Bull UASMV Ser Agric 70:160–166Google Scholar
  36. Vadas PA, Barnett KH, Undersander DJ (2008) Economics and energy of ethanol production from alfalfa, corn, and switchgrass in the Upper Midwest, USA. Bioenerg Res 1:44–55CrossRefGoogle Scholar
  37. Zenone T, Chen J, Deal MW, Wilske B, Jasrotia P, Xu J, Bhardwaj AK, Hamilton SK, Philip Robertson G (2011) CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of cultivation. Global Change Biol Bioenerg 3:401–412CrossRefGoogle Scholar

Copyright information

© The Ecological Society of Japan 2014

Authors and Affiliations

  • M. Ruidisch
    • 1
  • T. T. Nguyen
    • 2
  • Y. L. Li
    • 3
  • R. Geyer
    • 1
  • J. Tenhunen
    • 1
  1. 1.Department of Plant EcologyUniversity of BayreuthBayreuthGermany
  2. 2.Institute of Environmental Economics and World TradeLeibnitz University HannoverHannoverGermany
  3. 3.South China Botanical GardenChinese Academy of SciencesGuangzhouChina

Personalised recommendations