Skip to main content

Species diversity estimation of ambrosia and bark beetles in temperate mixed forests in Japan based on host phylogeny and specificity

Abstract

Understandings of the effect of host plant phylogeny on the structure of herbivore assemblage is useful for estimating global species richness of herbivores. Here we test the relationship between host plant phylogeny and two assemblages including ambrosia beetle assemblage that have been considered to be the lowest host specificity among plant-dependent guilds. These results of local scale were used for estimating regional species richness by extrapolating to the number of plant order and species in Japan. The estimated numbers were compared with the numbers of described species in Japan. Tree trunks of 17 plant species representing 17 orders of all major lineages of Japanese tree flora were exposed for collecting wood boring beetle species. A total of 12 ambrosia and four bark beetle species were collected. Similarity of both ambrosia and bark beetle assemblages showed a significant negative trend with phylogenetic distance between focal host plant species. The regression model for this relationship was well fit by a linear model whereas previous studies used a semi-log model, which suggests a difference in mechanism of host utilization with host taxonomic levels. Our results showed a broader host range of ambrosia beetle assemblage in temperate forest than to a comparable study in tropical rainforests. Species richness estimated is lower than the described species in Japan, suggesting the need for more samples along the altitudinal gradients for accurate estimation for the Japanese fauna.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Agrawal AA (2007) Macroevolution of plant defense strategies. Trends Ecol Evol 22:103–109. doi:10.1016/j.tree.2006.10.012

    PubMed  Article  Google Scholar 

  • Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:132–149. doi:10.1890/0012-9658(2006)87[132:PDS]2.0.CO;2

    Google Scholar 

  • Alfaro RI, Humble LM, Gonzalez P, Villaverde R, Allegro G (2007) The threat of the ambrosia beetle Megaplatypus mutatus (Chapuis) (=Platypus mutatus Chapuis) to world poplar resources. Forestry 80:471–479. doi:10.1093/forestry/cpm029

    Article  Google Scholar 

  • Amman G (1977) The role of the mountain pine beetle in lodgepole pine ecosystems: impact on succession. In: Mattson WJ (ed) The role of arthropods in forest ecosystem. Springer, Berlin Heidelberg New York, pp 3–18

    Chapter  Google Scholar 

  • Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. doi:10.1111/j.1461-0248.2010.01552.x

    PubMed  Article  Google Scholar 

  • Atkinson TH, Equihua-Martinez A (1986) Biology of bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae) of a tropical rain forest in southeastern Mexico with an annotated checklist of species. Ann Ent Soc Am 79:414–423

    Google Scholar 

  • Basset Y, Cizek L, Cuénoud P, Didham RK, Guilhaumon F, Missa O, Novotny V, Ødegaard F, Roslin T, Schmidl J, Tishechkin AK, Winchester NN, Roubik DW, Aberlenc H-P, Bail J, Barrios H, Bridle JR, Castaño-Meneses G, Corbara B, Curletti G, Da Rocha WD, De Bakker D, Delabie JHC, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, Miller SE, De Oliveira EG, Orivel J, Pollet M, Rapp M, Ribeiro SP, Roisin Y, Schmidt JB, Sørensen L, Leponce M (2012) Arthropod diversity in a tropical forest. Science 338:1481–1484. doi:10.1126/science.1226727

    CAS  PubMed  Article  Google Scholar 

  • Beaver R (1979) Host specificity of temperate and tropical animals. Nature 281:139–141. doi:10.1038/281139a0

    Article  Google Scholar 

  • Bell C, Soltis D, Soltis P (2005) The age of the angiosperms: a molecular timescale without a clock. Evolution 59:1245–1258. doi:10.1111/j.0014-3820.2005.tb01775.x

    CAS  PubMed  Google Scholar 

  • Belmain S, Simmonds M, Blaney W (2002) Influence of odor from wood-decaying fungi on host selection behavior of deathwatch beetle, Xestobium rufovillosum. J Chem Ecol 28:741–754. doi:10.1023/A:1015284625697

    CAS  PubMed  Article  Google Scholar 

  • Brändle M, Brandl R (2006) Is the composition of phytophagous insects and parasitic fungi among trees predictable? Oikos 113:296–304. doi:10.1111/j.2006.0030-1299.14418.x

    Article  Google Scholar 

  • Bremer B, Bremer K, Chase M (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linnean Soc 161:105–121. doi:10.1111/j.1095-8339.2009.00996.x

    Article  Google Scholar 

  • Bussler H, Bouget C, Brustel H, Brändle M, Riedinger V, Brandl R, Müller J (2011) Abundance and pest classification of scolytid species (Coleoptera: Curculionidae, Scolytinae) follow different patterns. For Ecol Manage 262:1887–1894. doi:10.1016/j.foreco.2011.08.011

    Article  Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159. doi:10.1111/j.1461-0248.2004.00707

    Google Scholar 

  • Colwell R, Mao C, Chang J (2004) Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:2717–2727. doi:10.1890/03-0557

    Article  Google Scholar 

  • Colwell R, Chao A, Gotelli N (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5:3–21. doi:10.1093/jpe/rtr044

    Article  Google Scholar 

  • Davies TJ, Barraclough TG, Chase MW, Soltis PS, Soltis DE, Savolainen V (2004) Darwin’s abominable mystery: insights from a supertree of the angiosperms. Proc Natl Acad Sci USA 101:1904–1909. doi:10.1073/pnas.0308127100

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Farrell BD, Sequeira AS, O’Meara BC, Normark BB, Chung JH, Jordal BH (2001) The evolution of agriculture in beetles (curculionidae: scolytinae and platypodinae). Evolution 55:2011–2027. doi:10.1146/annurev.ecolsys.36.102003.152626

    CAS  PubMed  Google Scholar 

  • Fischer A (1960) Latitudinal variations in organic diversity. Evolution 14:64–81

    Article  Google Scholar 

  • Gilbert GS, Webb CO (2007) Phylogenetic signal in plant pathogen-host range. Proc Natl Acad Sci USA 104:4979–4983. doi:10.1073/pnas.0607968104

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  • Gilbert GS, Magarey R, Suiter K, Webb CO (2012) Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens. Evol Appl 5:869–878. doi:10.1111/j.1752-4571.2012.00265.x

  • Goto H (2009) Taxonomic history of Japanese bark and ambrosia beetles with a check list of them. J Jpn For Soc (in Japanese) 91:479–485. doi:10.4005/jjfs.91.479

    Google Scholar 

  • Hamilton A, Basset Y, Benke K (2010) Quantifying uncertainty in estimation of tropical arthropod species richness. Am Nat 170:90–95. doi:10.1086/652998

    Article  Google Scholar 

  • Hijii N, Kajimura H, Urano T (1991) The mass mortality of oak trees induced by Platypus quercivorus (Murayama) and Platypus calamus Blandford (Coleoptera: Platypodidae): the density and spatial distribution of attack by the beetles. J Jpn For Soc 73:471–476

    Google Scholar 

  • Hofstetter RW, Dempsey TD, Klepzig KD, Ayres MP (2007) Temperature-dependent effects on mutualistic, antagonistic, and commensalistic interactions among insects, fungi and mites. Community Ecol 8:47–56. doi:10.1556/ComEc.8.2007.1.7

    Article  Google Scholar 

  • Hulcr J, Dunn RR (2011) The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. Proc R Soc Lond B Biol Sci 278:2866–2873. doi:10.1098/rspb.2011.1130

    Article  Google Scholar 

  • Hulcr J, Smith S (2010) Xyleborini ambrosia beetles: an identification tool to the world genera. http://itp.lucidcentral.org/id/wbb/xyleborini/index.html Accessed 24 June 2013

  • Hulcr J, Mogia M, Isua B, Novotny V (2007) Host specificity of ambrosia and bark beetles (Col., Curculionidae: Scolytinae and Platypodinae) in a New Guinea rainforest. Ecol Entomol 32:762–772. doi:10.1111/j.1365-2311.2007.00939.x

    Article  Google Scholar 

  • Jiao Y, Wickett N, Ayyampalayam S (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100. doi:10.1038/nature09916

    CAS  PubMed  Article  Google Scholar 

  • Kabe M (1959) Illustrations of Galleries of Japanese Bark Beetles (in Japanese). Meibundo, Tokyo

    Google Scholar 

  • Kennedy CEJ, Southwood TRE (1984) The number of species of insects associated with British trees: a re-analysis. J Anim Ecol 53:455–478

    Article  Google Scholar 

  • MacArthur RH (1972) Geographical ecology: patterns in the distribution of species. Harper and Row, New York

    Google Scholar 

  • May RM, Beverton RJH (1990) How Many Species? [and Discussion]. Phils Trans R Soc Lond B Biol Sci 330:293–304

    Article  Google Scholar 

  • Nobuchi A (1971) Studies on Scolytidae IX (Coleoptera) Key to the subfamilies, tribes and genera of Japan. Bull Gov For Exp Stn 238:149–164

    Google Scholar 

  • Novotny V, Basset Y (2000) Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos 89:564–572. doi:10.1034/j.1600-0706.2000.890316.x

    Article  Google Scholar 

  • Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844. doi:10.1038/416841a

    CAS  PubMed  Article  Google Scholar 

  • Novotny V, Miller SE, Baje L, Balagawi S, Basset Y, Cizek L, Craft KJ, Dem F, Drew RAI, Hulcr J, Leps J, Lewis OT, Pokon R, Stewart AJA, Samuelson GA, Weiblen GD (2010) Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest. J Anim Ecol 79:1193–1203. doi:10.1111/j.1365-2656.2010.01728.x

    PubMed  Article  Google Scholar 

  • Novotny V, Miller SE, Hrcek J, Baje L, Basset Y, Lewis OT, Stewart AJA, Weiblen GD (2012) Insects on plants: explaining the paradox of low diversity within specialist herbivore guilds. Am Nat 179:351–362. doi:10.1890/0012-9658(2000)081[1601:NLATVA]2.0.CO;2

    Google Scholar 

  • Ødegaard F, Diserud OH, Østbye K (2005) The importance of plant relatedness for host utilization among phytophagous insects. Ecol Lett 8:612–617. doi:10.1111/j.1461-0248.2005.00758.x

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hare RB, Simpson GL, Solymos P, Stevens HMH, Wagner H (2010) Vegan: Community Ecology Package. R package version 2.0-7. http://CRAN.R-project.org/package=vegan. Accessed 19 March 2013

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi:10.1093/bioinformatics/btg412

    CAS  PubMed  Article  Google Scholar 

  • Roe A, James P, Rice A (2011) Spatial community structure of mountain pine beetle fungal symbionts across a latitudinal gradient. Microb Ecol 62:347–360. doi:10.1007/s00248-011-9841-8

    PubMed Central  PubMed  Article  Google Scholar 

  • Rosenzweig M (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Satake Y, Hara H, Watari S, Tominari T (1989) Wild flowers of Japan. Woody Plants (in Japanese), Heibonsha, Tokyo

  • Six DL (2012) Ecological and evolutionary determinants of bark beetle—fungus symbioses. Insects 3:339–366. doi:10.3390/insects3010339

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • The University of Tokyo Chichibu Forest, Graduate School of Agricultural and Life Sciences, The University of Tokyo (2012) The 10th Education and Research Plan of The University of Tokyo Chichibu Forest (2011–2020) (in Japanese) http://repository.dl.itc.u-tokyo.ac.jp/dspace/bitstream/2261/51388/1/esr051004.pdf. Accessed 31 March 2013

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100. doi:10.1093/bioinformatics/btn358

    CAS  PubMed  Article  Google Scholar 

  • Weiblen GD, Webb CO, Novotny V, Basset Y, Miller SE (2006) Phylogenetic dispersion of host use in a tropical insect herbivore community. Ecology 87:62–75. doi:10.1890/0012-9658(2006)87[62:PDOHUI]2.0.CO;2

    Google Scholar 

  • Yonekura K, Kajita T (2003) BG Plants YList: an online service of Japanese plant names, including a nomenclature index (in Japanese). http://bean.bio.chiba-u.jp/bgplants/ylist_main.html. Accessed 24 Oct 2011

Download references

Acknowledgments

We are grateful to H. Goto, Forestry and Forest Products Research Institute, Kyushu, Japan, for identifying Scolytinae specimens. We thank J. Uchikawa, Y. Igarashi, R. Ito, R. Nakadai, S. Saito, J. Saihanna, Y. Okamura, and S. Takao for their help in the field work and the technical staff of the University Forests in Chichibu, the University of Tokyo for their kind support. We also thank Drs. V. Novotny and J. Hulcr for reviewing the manuscript and providing data in tropical rainforests for the comparison. This work was supported by a Grant-in-Aid for Scientific Research from the Japanese Society for the Promotion of Science to MM (No. 24310170) and NK (No. 23255011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Murakami.

About this article

Cite this article

Watanabe, K., Murakami, M., Hirao, T. et al. Species diversity estimation of ambrosia and bark beetles in temperate mixed forests in Japan based on host phylogeny and specificity. Ecol Res 29, 299–307 (2014). https://doi.org/10.1007/s11284-013-1123-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-013-1123-0

Keywords

  • Host specificity
  • Ambrosia and bark beetle
  • Host plant phylogeny
  • Temperate mixed forest
  • Species diversity estimation